NASM 2.05 based x86 Instruction
Reference

Copyright 1996-2009 the NASM Authors - All rights reserved. NASM is now licensed under
the 2-clause BSD license, also known as the simplified BSD license.

This document has been compiled on 2025-06-11.

Contents

Section 1: License
Appendix A: x86 Instruction Reference
A.1 Key to Operand Specifications
A.2 Key to Opcode Descriptions
A.2.1 Register Values
A.2.2 Condition Codes
A.2.3 SSE Condition Predicates
A.2.4 Status Flags
A.2.5 Control Flags
A.2.5.1 IF - Interrupt flag
A.2.5.2 DF - Direction flag
A.2.5.3 TF - Trace flag
A.2.6 Effective Address Encoding: ModR/M and SIB
A.2.6.1 ModR/M encoding a register
A.2.6.2 Memory al6 ModR/M encoding
A.2.6.3 Memory a32 ModR/M and SIB encoding
A.2.7 Instruction Prefixes
A.2.7.1 8086 Instruction Prefixes
A.2.7.1.1 8086 Segment Overrides
A.2.7.1.2 8086 Repeat Prefixes
A.2.7.1.3 8086 LOCK Prefix
A.2.7.2 286 Instruction Prefixes
A.2.7.3 386 Instruction Prefixes
A.2.8 Register Extensions: The REX Prefix
A.3 Key to Instruction Flags

17
18
18
19
20
21
22
23
23
24
24
24
24
25
25
25
26
26
26
27
27
27
27
28
29

A.4 Emulator notes

A.4.1 Common corner cases

A.4.2 Emulator call encodings

A.5 x86 Instruction Set

A.5.1AAA AAS AAM AAD ASCII Adjustments

A.5.2 ADC Add with Carry

A.5.3ADD Add Integers

A.5.4 ADDPDADD Packed Double-Precision FP Values
A.5.5ADDPSADD Packed Single-Precision FP Values
A.5.6 ADDSDADD Scalar Double-Precision FP Values
A.5.7 ADDSSADD Scalar Single-Precision FP Values
A.5.8 AND Bitwise AND

A.5.9 ANDNPDBitwise Logical AND NOT of Packed Double-

Precision FP Values

A.5.10ANDNPSBitwise Logical AND NOT of Packed Slngle-

Precision FP Values

A.5.11 ANDPDBitwise Logical AND For Single FP
A.5.12 ANDPSBitwise Logical AND For Single FP
A.5.13ARPL Adjust RPL Field of Selector
A.5.14BOUNDCheck Array Index against Bounds
A.5.15BSF, BSR Bit Scan

A.5.16 BSWAPByte Swap

A.5.17BT, BTC BTR BTS: Bit Test

A.5.18 CALL: Call Subroutine
A.5.19CBWCWDCDQCWDESign Extensions
A.5.20CLC CLD, CLI, CLTS. Clear Flags

A.5.21 CLFLUSH Flush Cache Line
A.5.22CMCComplement Carry Flag
A.5.23CMOVcc Conditional Move

A.5.24CMP Compare Integers

A.5.25CMPccPD Packed Double-Precision FP Compare

3

29
29
30
30
30
31
32
32
33
33
33
33

34

34
35
35

35

35
36
36

36
37
38
38

38
38
38
39
39

A.5.26 CMPccPS Packed Single-Precision FP Compare

A.5.27CMPSBCMPSWCMPSDCompare Strings
A.5.27.1 Pseudo-code examples

A.5.28CMPccSD Scalar Double-Precision FP Compare

A.5.29CMPccSS Scalar Single-Precision FP Compare

A.5.30CMPXCH&MPXCHG488Compare and Exchange

A.5.31CMPXCHG8E ompare and Exchange Eight Bytes

A.5.32COMISD Scalar Ordered Double-Precision FP Compare
and Set EFLAGS

A.5.33COMISS Scalar Ordered Slngle Precision FP Compare and

Set EFLAGS
A.5.34CPUID: Get CPU Identification Code

A.5.35CVTDQ2PD Packed Signed INT32 to Packed Double-
Precision FP Conversion e e

A.5.36 CVTDQ2PS Packed Slgned INT32 to Packed Slngle-
Precision FP Conversion - .o . .
A.5.37CVTPD2DQPacked Double-Precision FP to Packed Signed
INT32 Conversion
A.5.38CVTPD2PI. Packed Double-Precision FP to Packed Signed
INT32 Conversion
A.5.39CVTPD2PSPacked Double-Precision FP to Packed Single-
Precision FP Conversion e e e e e e
A.5.40CVTPI2PD: Packed Signed INT32 to Packed Double-
Precision FP Conversion e e e e e e e

A.5.41CVTPI2PS: Packed Signed INT32 to Packed Single-FP
Conversion

A.5.42CVTPS2DQPacked Slngle Precision FP to Packed Signed
INT32 Conversion C e e e e e e

A.5.43CVTPS2PDPacked Single-Precision FP to Packed Double-
Precision FP Conversion C e e e e

A.5.44CVTPS2PI. Packed Slngle Precision FP to Packed Signed
INT32 Conversion . e e e e e
A.5.45CVTSD2SI: Scalar Double-Precision FP to Slgned INT32
Conversion

A.5.46 CVTSD2SS Scalar Double-Precision FP to Scalar Single-
Precision FP Conversion e e e e e e

40
41
41
42
42
43
44

44

44
45

45

45

46

46

46

46

a7

a7

a7

47

a7

48

A.5.47CVTSI2SD: Slgned INT32 to Scalar Double-Precision FP
Conversion
A.5.48CVTSI2SS: Slgned INT32 to Scalar Slngle Precision FP
Conversion

A.5.49CVTSS2SD Scalar Single-Precision FP to Scalar Double-

Precision FP Conversion
A.5.50CVTSS2SI: Scalar Single-Precision FP to Slgned INT32
Conversion

A.5.51CVTTPD2DQ Packed Double-Precision FP to Packed
Signed INT32 Conversion with Truncation C e

A.5.52CVTTPD2PI. Packed Double-Precision FP to Packed
Signed INT32 Conversion with Truncation

A.5.53CVTTPS2DQPacked Single-Precision FP to Packed Signed
INT32 Conversion with Truncation e e

A.5.54CVTTPS2PI: Packed Single-Precision FP to Packed Signed
INT32 Conversion with Truncation e e e e

A.5.55CVTTSD2SI: Scalar Double-Precision FP to Slgned INT32
Conversion with Truncation e e e e

A.5.56 CVTTSS2SI: Scalar Single-Precision FP to Slgned INT32
Conversion with Truncation : Coe Coe e

A.5.57DAA DAS Decimal Adjustments
A.5.58DEC Decrement Integer

A.5.59DIV: Unsigned Integer Divide
A.5.60DIVPD: Packed Double-Precision FP Divide
A.5.61DIVPS: Packed Single-Precision FP Divide
A.5.62DIVSD: Scalar Double-Precision FP Divide
A.5.63DIVSS: Scalar Single-Precision FP Divide
A.5.64EMMSEmpty MMX State

A.5.65ENTER Create Stack Frame

A.5.66 F2XMI Calculate 2**X-1

A.5.67FABS Floating-Point Absolute Value
A.5.68FADD FADDP Floating-Point Addition
A.5.69FBLD, FBSTP. BCD Floating-Point Load and Store
A.5.70FCHS Floating-Point Change Sign

5

48

48

48

49

49

49

49

50

50

50
50
51
51
51
52
52
52
52
52
53
53
53
54
54

A.5.71FCLEX FNCLEX Clear Floating-Point Exceptions
A.5.72FCMOVcc Floating-Point Conditional Move

A.5.73FCOMFCOMPFCOMPH-COM| FCOMIP Floatlng Point

Compare
A.5.74FCOS Cosine
A.5.75FDECSTPDecrement Floating-Point Stack Pointer

A.5.76 FxDISI , FXENI: Disable and Enable Floating-Point

Interrupts

A.5.77FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
A.5.78FEMMSFaster Enter/Exit of the MMX or floatlng pomt

state

A.5.79FFREE Flag Floating-Point Register as Unused
A.5.80FIADD: Floating-Point/Integer Addition
A.5.81FICOM FICOMR Floating-Point/Integer Compare
A.5.82FIDIV , FIDIVR : Floating-Point/Integer Division

A.5.83FILD, FIST, FISTP : Floating-Point/Integer Conversion

A.5.84FIMUL.: Floating-Point/Integer Multiplication
A.5.85FINCSTP: Increment Floating-Point Stack Pointer
A.5.86FINIT , ENINIT : initialize Floating-Point Unit
A.5.87FISUB: Floating-Point/Integer Subtraction
A.5.88FLD: Floating-Point Load

A.5.89FLDxx: Floating-Point Load Constants
A.5.90FLDCWLoad Floating-Point Control Word
A.5.91FLDENV Load Floating-Point Environment
A.5.92FMUL, FMULP Floating-Point Multiply

A.5.93FNOP Floating-Point No Operation

A.5.94FPATAN FPTAN Arctangent and Tangent
A.5.95FPREMFPREM1 Floating-Point Partial Remainder
A.5.96 FRNDINT: Floating-Point Round to Integer
A.5.97FSAVE FRSTORSave/Restore Floating-Point State
A.5.98FSCALE Scale Floating-Point Value by Power of Two

6

54
54

55
56
56

56
56

57
57
57
57
58
58
58
58
58
59
59
59
59
60
60
60
60
60
61
61
61

A.5.99FSETPMSet Protected Mode

A.5.100FSIN, FSINCOS Sine and Cosine
A.5.101FSQRT Floating-Point Square Root
A.5.102FST, FSTP. Floating-Point Store
A.5.103FSTCWStore Floating-Point Control Word
A.5.104FSTENV Store Floating-Point Environment
A.5.105FSTSWStore Floating-Point Status Word
A.5.106FSUB FSUBR FSUBRFSUBRPFloating-Point Subtract
A.5.107FTST: TestSTO Against Zero
A.5.108FUCOMXxxFloating-Point Unordered Compare
A.5.109FXAM Examine Class of Value iBTO
A.5.110FXCH Floating-Point Exchange
A.5.111FXRSTORRestore-P, MMXandSSE State
A.5.112FXSAVE StoreFP, MMXandSSE State
A.5.113FXTRACT Extract Exponent and Significand

A.5.114FYL2X, FYL2XP1l. Compute Y times Log2(X) or
Log2(X+1)o

A.5.115HLT: Halt Processor

A.5.116IBTS: Insert Bit String

A.5.117IDIV : Signed Integer Divide

A.5.118IMUL: Signed Integer Multiply

A.5.119IN: Input from 1/O Port

A.5.120INC: Increment Integer

A.5.121INSB, INSW, INSD: Input String from I/O Port
A.5.121.1 Pseudo-code examples

A.5.122INT : Software Interrupt

A.5.123INT3,INT1, ICEBP, INTO1 : Breakpoints

A.5.124INTO: Interrupt if Overflow

A.5.125INVD: Invalidate Internal Caches

A.5.126INVLPG: Invalidate TLB Entry

7

61
61
62
62
62
62
62
63
63
63
64
64
65
65
65

65
65
66
66
66
67
67
68
68
68
69
69
69
69

A.5.127IRET, IRETW, IRETD: Return from Interrupt
A.5.128Jcc : Conditional Branch

A.5.129JCXZ, JECXZ Jump if CX/ECX Zero
A.5.130JMP. Jump

A.5.131LAHF Load AH from Flags

A.5.132LAR Load Access Rights

A.5.133LDMXCSR Load Streaming SIMD Extension
Control/Status
A.5.134LDS LES, LFS, LGS LSS: Load Far Pointer
A.5.135LEA: Load Effective Address
A.5.136LEAVE Destroy Stack Frame
A.5.137LFENCE Load Fence
A.5.138LGDT, LIDT , LLDT: Load Descriptor Tables
A.5.139LMSWLoad/Store Machine Status Word
A.5.140LOADALL LOADALL286 Load Processor State
A.5.141LODSBLODSWLODSDLoad from String

A.5.141.1 Pseudo-code examples
A.5.1421. OOR LOOPE LOOPZ LOOPNELOOPNZ Loop with
Counter L.
A.5.143LSL: Load Segment Limit
A.5.144LTR: Load Task Register
A.5.145MASKMOVDQ@BYyte Mask Write
A.5.146MASKMOV@®@yte Mask Write
A.5.147MAXPDReturn Packed Double-Precision FP Maximum
A.5.148MAXPSReturn Packed Single-Precision FP Maximum
A.5.149MAXSDReturn Scalar Double-Precision FP Maximum
A.5.150MAXSSReturn Scalar Single-Precision FP Maximum
A.5.151MFENCEMemory Fence
A.5.152MINPD Return Packed Double-Precision FP Minimum
A.5.153MINPS. Return Packed Single-Precision FP Minimum
A.5.154MINSD Return Scalar Double-Precision FP Minimum

69
70
70
70
71
71

72
72
72
73
73
73
74
74
74
74

75
75
75
75
76
76
76
76
76
76
77
77
77

A.5.155MINSS Return Scalar Single-Precision FP Minimum
A.5.156MOVMove Data
A.5.157MOVAPDMove Aligned Packed Double-Precision FP
Values
A.5.158MOVAPS Move Allgned Packed Slngle Precision FP
Values
A.5.159MOVDMove Doubleword to/from MMX Register
A.5.160MOVDQ2Move Quadword from XMM to MMX register.
A.5.161MOVDQAMove Aligned Double Quadword
A.5.162MOVDQWIove Unaligned Double Quadword
A.5.163MOVHLPMove Packed Single-Precision FP High to Low
A.5.164MOVHPIMove High Packed Double-Precision FP
A.5.165MOVHPSMove High Packed Single-Precision FP
A.5.166MOVLHPMove Packed Single-Precision FP Low to High
A.5.167MOVLPBMove Low Packed Double-Precision FP
A.5.168MOVLPSMove Low Packed Single-Precision FP
,:\AS %(69MOVMSKPEExtract Packed Double-Precision FP Slgn
as

A.5.170MOVMSKPRSExtract Packed Single-Precision FP Sign
Mask

A.5.171IMOVNTDMMove Double Quadword Non Temporal
A.5.172MOVNTI Move Doubleword Non Temporal

A.5.173MOVNTPDMove Aligned Four Packed Slngle Precision

FP Values Non Temporal

A.5.174MOVNTPSMove Aligned Four Packed Slngle Precision

FP Values Non Temporal
A.5.175MOVNTMove Quadword Non Temporal
A.5.176 MOVQMove Quadword to/from MMX Register
A.5.177MOVQ2DMove Quadword from MMX to XMM register.
A.5.178MOVSBMOVSWIOVSDMove String

A.5.178.1 Pseudo-code examples
A.5.179MOVSDMove Scalar Double-Precision FP Value
A.5.180MOVSSMove Scalar Single-Precision FP Value

9

78
78

79

79
79
79
79
80
80
80
80
81
81
81

82

82
82
82

82

82
82
83
83
83
83
84
84

A.5.181MOVSXMOVZXMove Data with Sign or Zero Extend

A.5.182MOVUPDMove Unallgned Packed Double-Precision FP

Values

A.5.183MOVUPSMove Unallgned Packed Slngle -Precision FP

Values

A.5.184MUL Unsigned Integer Multiply

A.5.185MULPDPacked Single-FP Multiply

A.5.186MULPSPacked Single-FP Multiply

A.5.187MULSDScalar Single-FP Multiply

A.5.188MULSS Scalar Single-FP Multiply

A.5.189NEG NOT Two's and Ones' Complement

A.5.190NOP No Operation

A.5.1910R Bitwise OR

A.5.1920RPDBit-wise Logical OR of Double-Precision FP Data

A.5.1930RPSBiIt-wise Logical OR of Single-Precision FP Data

A.5.1940UT Output Data to I/O Port

A.5.1950UTSBOUTSWOUTSDOutput String to I/O Port
A.5.195.1 Pseudo-code examples

A.5.196 PACKSSDWACKSSWBPACKUSWHRack Data

A.5.197PADDBPADDWPADDDAdd Packed Integers

A.5.198PADDQAdd Packed Quadword Integers

A.5.199PADDSB PADDSWAdd Packed Slgned Integers With

Saturation

A.5.200PADDSIWMMX Packed Addition to Implicit Destination

A.5.201PADDUSB PADDUSWAdd Packed UnS|gned Integers

With Saturation

A.5.202PAND PANDNMMX Bitwise AND and AND-NOT
A.5.203PAUSE Spin Loop Hint

A.5.204PAVEB MMX Packed Average

A.5.205PAVGB PAVGWverage Packed Integers

A.5.206 PAVGUSBAverage of unsigned packed 8-bit values
A.5.207PCMPxx Compare Packed Integers.

10

84

84

85
85
85
85
85
85
86
86
86
87
87
87
87
88
88
89
89

89
89

90
90
90
90
91
91
91

A.5.208PDISTIB : MMX Packed Distance and Accumulate with
Implied Register

A.5.209PEXTRWEXtract Word

A.5.210PF2ID : Packed Single-Precision FP to Integer Convert
A.5.211PF2IW: Packed Slngle Precision FP to Integer Word
Convert
A.5.212PFACC Packed Single-Precision FP Accumulate
A.5.213PFADD Packed Single-Precision FP Addition
A.5.214PFCMPxx Packed Single-Precision FP Compare
A.5.215PFMAXPacked Single-Precision FP Maximum
A.5.216PFMIN: Packed Single-Precision FP Minimum
A.5.217PFMUL Packed Single-Precision FP Multiply

A.5.218PFNACC Packed Slngle Precision FP Negative
Accumulate

A.5.219PFPNACC Packed Single-Precision FP Mixed
Accumulate
A.5.220PFRCP Packed Single-Precision FP Reciprocal
Approximation

A.5.221PFRCPIT1: Packed Slngle Precision FP ReC|procaI First
Iteration Step . .o Coe . :

A.5.222PFRCPIT2: Packed Single-Precision FP Reciprocal/
Reciprocal Square Root, Second Iteration Step .o

A.5.223PFRSQIT1: Packed Single-Precision FP Remprocal
Square Root, First Iteration Step e .o

A.5.224PFRSQRTPacked Slngle Precision FP Recrprocal Square
Root Approximation . . .

A.5.225PFSUB Packed Single-Precision FP Subtract
A.5.226 PFSUBRPacked Single-Precision FP Reverse Subtract

A.5.227PI2FD: Packed Doubleword Integer to Slngle Precision
FP Convert .

A.5.228PI2FW: Packed Word Integer to Slngle Precision FP
Convert :

A.5.229PINSRW Insert Word
A.5.230PMACHRIW Packed Multlply and Accumulate with
Rounding . . C e

11

92
92
92

93
93
93
93
93
94
94

94

94

94

95

95

95

95
96
96

96

96
96

96

A.5.231PMADDWMMX Packed Multiply and Add I

A.5.232PMAGWVMX Packed Magnitude e Y

A.5.233PMAXSWPacked Signed Integer Word Maximum 97
A.5.234PMAXUBPacked Unsigned Integer Byte Maximum S ° <
A.5.235PMINSWPacked Signed Integer Word Minimum c 98
A.5.236PMINUB Packed Unsigned Integer Byte Minimum 98
A.5.237PMOVMSKB/ove Byte Mask To Integer C e e e 98

A.5.238PMULHRWE@MULHRIMMultiply Packed 16-bit Integers

With Rounding, and Store High Word Co P | &
A.5.239PMULHRWAMultiply Packed 16-bit Integers With

Rounding, and Store High Word e e 099
A524OPMULHUV\MuIt|pIy Packed 16-bit Integers and Store

Highword oo e e e e e e .99

A.5. 241PMULHV\PMULL\NI\/IuIt|pIy Packed 16-bit Integers and

Store . . . oo e e 99
A.5. 242PMULUDQJIuIt|pIy Packed UnS|gned 32-bit Integers and

Store. e e e e 99
A.5.243PMVccZB MMX Packed ConditionalMove 100
A.5.244POR Pop Data from Stack C e e e e e e 100
A.5.245POPAX Pop All General-Purpose Registers e Ko X
A.5.246POPFx Pop Flags Register 101
A.5.247POR MMX Bitwise OR e A 0k

A.5.248PREFETCHPrefetch Data Into Caches 101
A.5.249PREFETCHhPrefetch Data Into Caches Y X0 4
A.5.250PSADBWPacked Sum of Absolute Differences 102
A.5.251PSHUFDShuffle Packed Doublewords Y 10 22
A.5.252PSHUFHWshuffle Packed HighWords 102
A.5.253PSHUFLWShuffle Packed Low Words T K X
A.5.254PSHUFWShuffle PackedWords 103
A.5.255PSLLx: Packed Data Bit Shift Left Logical 103
A.5.256PSRAXx Packed Data Bit Shift Right Arithmetic 104
A.5.257PSRLx Packed Data Bit Shift Right Logical 104

12

A.5.258PSUBXx Subtract Packed Integers

A.5.259PSUBSxx PSUBUSx Subtract Packed Integers With

Saturation

A.5.260PSUBSIW MMX Packed Subtract with Saturation to

Implied Destination

A.5.261PSWAPDSwap Packed Data
A.5.262PUNPCKxxx Unpack and Interleave Data
A.5.263PUSH Push Data on Stack

A.5.264PUSHAXx Push All General-Purpose Registers
A.5.265PUSHFx Push Flags Register
A.5.266PXORMMX Bitwise XOR

A.5.267RCL, RCR Bitwise Rotate through Carry Bit
A.5.268RCPPSPacked Single-Precision FP Reciprocal
A.5.269RCPSSScalar Single-Precision FP Reciprocal
A.5.270RDMSRRead Model-Specific Registers
A.5.271RDPMCRead Performance-Monitoring Counters
A.5.272RDSHRRead SMM Header Pointer Register
A.5.273RDTSCRead Time-Stamp Counter

A.5.274RET, RETF RETN Return from Procedure Call
A.5.275R0OL, ROR Bitwise Rotate

A.5.276RSDCRestore Segment Register and Descriptor
A.5.277RSLDT Restore Segment Register and Descriptor
A.5.278RSMResume from System-Management Mode

A.5.279RSQRTPS Packed Slngle Precision FP Square Root

Reciprocal

A.5.280RSQRTSS Scalar Slngle Precision FP Square Root

Reciprocal

A.5.281RSTS Restore TSR and Descriptor
A.5.282SAHE Store AH to Flags
A.5.283SAL, SAR Bitwise Arithmetic Shifts
A.5.284SALC Set AL from Carry Flag
A.5.285SBB Subtract with Borrow

13

105

105

106
106
106
107

108
108
109
109
109
110
110
110
110
110
110
111
111
111
111

111

112
112
112
112
113
113

A.5.286SCASB SCASWSCASD Scan String

A.5.286.1 Pseudo-code examples
A.5.287SETcc: Set Register from Condition
A.5.288SFENCE Store Fence
A.5.289SGDTSIDT, SLDT: Store Descriptor Table Pointers
A.5.290SHL, SHR Bitwise Logical Shifts
A.5.291SHLD SHRD Bitwise Double-Precision Shifts
A.5.292SHUFPDShuffle Packed Double-Precision FP Values
A.5.293SHUFPS Shuffle Packed Single-Precision FP Values
A.5.294SMI: System Management Interrupt
A.5.295SMINT, SMINTOLD Software SMM Entry (CYRIX)
A.5.296 SMSWStore Machine Status Word
A.5.297SQRTPDPacked Double-Precision FP Square Root
A.5.298SQRTPSPacked Single-Precision FP Square Root
A.5.299SQRTSDScalar Double-Precision FP Square Root
A.5.300SQRTSSScalar Single-Precision FP Square Root
A.5.301STC STD, STI : Set Flags

A.5.302STMXCSR Store Streaming SIMD Extension

Control/Status

A.5.303STOSB STOSWSTOSD Store Byte to String
A.5.303.1 Pseudo-code examples

A.5.304STR Store Task Register

A.5.305SURB Subtract Integers

A.5.306SUBPD Packed Double-Precision FP Subtract

A.5.307SUBPS Packed Single-Precision FP Subtract

A.5.308SUBSD Scalar Single-FP Subtract

A.5.309SUBSS Scalar Single-FP Subtract

A.5.310SVDC Save Segment Register and Descriptor

A.5.311SVLDT Save LDTR and Descriptor

A.5.312SVTS Save TSR and Descriptor

14

114
114
114
114
115
115
116
116
117
117
117
117
117
118
118
118
118

118
118
119
119
119
120
120
120
120
121
121
121

A.5.313SYSCALL Call Operating System
A.5.314SYSENTERFast System Call
A.5.315SYSEXIT: Fast Return From System Call
A.5.316SYSRET Return From Operating System
A.5.317TEST: Test Bits (notional bitwise AND)

A.5.318UCOMISD Unordered Scalar Double-Precision FP
compare and set EFLAGS

A.5.319UCOMISS Unordered Scalar Single-Precision FP
compare and set EFLAGS C e e e e e

A.5.320UDQ UD1 UD2 Undefined Instruction
A.5.321UMOVUser Move Data

A.5.322UNPCKHPDUJnpack and Interleave ngh Packed Double-

Precision FP Values

A.5.323UNPCKHPSUnpack and Interleave H|gh Packed Slngle-

Precision FP Values

A.5.324UNPCKLPDUnNpack and Interleave Low Packed Double-

Precision FP Data

A.5.325UNPCKLPSUnpack and Interleave Low Packed Single-

Precision FP Data

A.5.326VERR VERW\Verify Segment Readability/Writability
A.5.327WAIT: Wait for Floating-Point Processor
A.5.328WBINVD Write Back and Invalidate Cache
A.5.329WRMSRNrite Model-Specific Registers
A.5.330WRSHRWrite SMM Header Pointer Register
A.5.331XADD Exchange and Add

A.5.332XBTS Extract Bit String

A.5.333XCHGEXxchange

A.5.334XLATB: Translate Byte in Lookup Table

A.5.335XOR Bitwise Exclusive OR

A.5.336XORPD Bitwise Loglcal XOR of Double-Precision FP
Values
A.5.337XORPS Bitwise Loglcal XOR of Slngle Precision FP
Values

15

121
121
122
123
123

124

124
124
124

125

125

125

125
126
126
126
126
126
126
127
127
127
128

128

129

Source Control Revision ID A 1 0
Index N ¥ |

16

Section 1: License

NASM is now licensed under the 2-clause BSD license, also known as the simplified BSD
license.

Copyright 1996-2009 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

17

A.l

Appendix A: x86 Instruction Reference

This appendix provides a complete list of the machine instructions which NASM will assemble,
and a short description of the function of each one.

It is not intended to be an exhaustive documentation on the fine details of the instructions'
function, such as which exceptions they can trigger: for such documentation, you should go to
Intel's Web sitehttp://developer.intel.com/design/Pentium4/manuals/

Instead, this appendix is intended primarily to provide documentation on the way the instructions
may be used within NASM. For example, looking u@OPwill tell you that NASM allows

CXor ECXto be specified as an optional second argument tb@@Pinstruction, to enforce
which of the two possible counter registers should be used if the default is not the one desired.

The instructions are not quite listed in alphabetical order, since groups of instructions with
similar functions are lumped together in the same entry. Most of them don't move very far from
their alphabetic position because of this.

Key to Operand Specifications
The instruction descriptions in this appendix specify their operands using the following notation:

» Registersreg8 denotes an 8-bit general purpose regisegl6 denotes a 16-bit general
purpose registereg32 a 32-bit one andeg64 a 64-bit onefpureg denotes one of
the eight FPU stack registensimxreg denotes one of the eight 64-bit MMX registers,
andsegreg denotes a segment registemmreg denotes one of the 8, or 16 in x64 long
mode, SSE XMM registers. In addition, some registers (su&iLaBX ECXor RAX) may
be specified explicitly.

* Immediate operandsmm denotes a generic immediate operamdm8, imm16 and
imm32 are used when the operand is intended to be a specific size. For some of these
instructions, NASM allows an explicit specifier: for examph)D ESP,16 could be
interpreted as eithé&xDD r/m32,imm32 orADD r/m32,imm8 . Iftheimmediate value
is known during the assembling of that instruction, and fits in the range of a signed byte,
then recent versions of NASM automatically optimise the instruction by choosing the latter
form. Itis allowed to specifADD ESP,BYTE 16explicitly, which is needed to indicate
that optimisation in case the immediate value is not known by NASM. (Eg, if itis a symbol
reference only resolved by the linker.) Conversely, using the qualéRICT WORD
or STRICT DWORIrces NASM to use the longer forms. There is a special case of the
allowance of anmm64 for particular x64 versions of the MOV instruction.

* Memory referenceanemdenotes a generic memory referenceem8 mem16 mema32
mem64and mem80are used when the operand needs to be a specific size. Again, a
specifier is needed in some casP&C [address] is ambiguous and will be rejected

18

http://developer.intel.com/design/Pentium4/manuals/

by NASM. You must specifDEC BYTE [address] , DEC WORD [address] or
DEC DWORD [address] instead.

Restricted memory references: one form of B®\Mnstruction allows a memory address
to be specifiedvithoutallowing the normal range of register combinations and effective
address processing. This is denoted hgmoffs8 , memoffsl6 , memoffs32 or
memoffs64 .

Register or memory choices: many instructions can accept either a regrstar
memory reference as an operant8 is shorthand foreg8/mem8 ; similarly r/m16
and r/m32 . On legacy x86 modes/m64 is MMX-related, and is shorthand for
mmxreg/mem64. When utilizing the x86-64 architecture extensiom64 denotes use
of a 64-bit GPR as well, and is shorthand feg64/mem64 .

A.2 Key to Opcode Descriptions

This appendix also provides the opcodes which NASM will generate for each form of each
instruction. The opcodes are listed in the following way:

A hex number, such &¥F, indicates a fixed byte containing that number.

A hex number followed bytr , such asC8+r, indicates that one of the operands to the
instruction is a register, and the ‘register value’ of that register should be added to the hex
number to produce the generated byte. For example, EDX has register value 2, so the code
C8+r, when the register operand is EDX, generates the hex@t&®egister values for
specific registers are given in section A.2.1.

A hex number followed bytcc, such as70+cc , indicates that the instruction name has

a condition code suffix, and the numeric representation of the condition code should be
added to the hex number to produce the generated byte. For example, th&deade

when the instruction contains thEEcondition, generates the hex byt. Condition codes

and their numeric representations are given in section A.2.2. In oneféagec™l) is

given, which means that the inverse condition code is encoded in the byte.

A slash followed by a digit, such @3 , indicates that one of the operands to the instruction

is a memory address or register (denateshor r/m , with an optional size). This is to be
encoded as an effective address, with a ModR/M byte, an optional SIB byte, and an optional
displacement, and the spare (register) field of the ModR/M byte should be the digit given
(which will be from 0 to 7, so it fits in three bits). The encoding of effective addresses is
given in section A.2.6.

The code'r combines the above two: it indicates that one of the operands is a memory
address or/m , and another is a register, and that an effective address should be generated
with the spare (register) field in the ModR/M byte being equal to the ‘register value’ of
the register operand. The encoding of effective addresses is given in section A.2.6; register
values are given in section A.2.1.

The code#b ,iw andid indicate that one of the operands to the instruction is animmediate
value, and that thisis to be encoded as a byte, little-endian word or little-endian doubleword
respectively.

The codesb ,rw andrd indicate that one of the operands to the instruction is animmediate
value, and that thdifferencebetween this value and the address of the end of the instruction

19

is to be encoded as a byte, word or doubleword respectively. Where therfaroh
appears, it indicates that eithev orrd should be used according to whether assembly is
being performed iBITS 16 orBITS 32 state respectively.

* The code®w andod indicate that one of the operands to the instruction is a reference to
the contents of a memory address specified as an immediate value: this encoding is used in
some forms of thé1OMnstruction in place of the standard effective-address mechanism.
The displacement is encoded as a word or doubleword. Agaifod denotes thabw or
od should be chosen according to tBBEI'S setting.

* Thecode®16 ando32 indicate that the given form of the instruction should be assembled
with operand size 16 or 32 bits. In other word46 indicates &6 prefix inBITS 32
state, but generates no cod@®&iiTS 16 state; an@32 indicates &6 prefix inBITS 16
state but generates nothingBhTS 32 .

* The codesl6 anda32, similarly tool6 ando32, indicate the address size of the given
form of the instruction. Where this does not matchBHES setting, &7 prefix is required.
Please note thatl6 is useless in long mode as 16-bit addressing is depreciated on the
x86-64 architecture extension.

A.2.1 Register Values

Where an instruction requires a register value, it is already implicit in the encoding of the rest
of the instruction what type of register is intended: an 8-bit general-purpose register, a segment
register, a debug register, an MMX register, or whatever. Therefore there is no problem with
registers of different types sharing an encoding value.

Please note that for the register classes listed below, the register extensions (REX) classes require
the use of the REX prefix, which is only available when in long mode on an x86-64 processor.
This pretty much goes for any register that has a number higher than 7.

The encodings for the various classes of register are:

* 8-bit general register&iL is 0,CLis 1,DLis 2,BL is 3, AHis 4, CHis 5, DHis 6 andBH
is 7. Please note th&tH BH CHandDHare not addressable when using the REX prefix
in long mode.

» 8-bit general register extensions (REX¥PLis 4,BPLis 5,SIL is 6,DIL is 7,R8Bis 8,
R9Bis 9,R10Bis 10,R11Bis 11,R12Bis 12,R13Bis 13,R14Bis 14 andR15Bis 15.

» 16-bit general register#Xis 0,CXis 1,DXis 2,BXis 3,SPis 4,BPis 5, Sl is 6, andDI
is7.

» 16-bit general register extensions (RER8Wis 8, ROWis 9, R10wis 10,R11Wis 11,
R12Wis 12,R13Wis 13,R14Wis 14 andR15Wis 15.

e 32-bit general register&AXis 0, ECXis 1,EDXis 2,EBXis 3,ESPis 4,EBPis 5,ESI
is 6, andeDI is 7.

» 32-bit general register extensions (RER8Dis 8, R9Dis 9, R10Dis 10,R11Dis 11,
R12Dis 12,R13Dis 13,R14Dis 14 andR15Dis 15.

* 64-bit general register extensions (RERAXis 0,RCXis 1, RDXis 2,RBXis 3,RSPis
4,RBPis 5,RSl is 6,RDI is 7,R8is 8,R9is 9,R10is 10,R11is 11,R12is 12,R13is

20

A.2.2

13,R14is 14 andR15is 15.
Segment register&Sis 0,CSis 1,SSis 2,DSis 3,FSis 4, andGSis 5.

Floating-point registersST0is 0,ST1is 1,ST2is 2,ST3is 3,ST4is 4,ST5is 5,ST6
is6,andST7is 7.

64-bit MMX registersMMdQs 0, MM1is 1, MM2s 2, MM3s 3, MMd4s 4, MMSs 5, MMGs
6, andMM7s 7.

128-bit XMM (SSE) registersXMMds 0, XMM1is 1, XMM2s 2, XMM3s 3, XMM4s 4,
XMMS5s 5, XMM@s 6 andXMM7s 7.

128-bit XMM (SSE) register extensions (REX¥MM8s 8, XMM3s 9, XMM10is 10,
XMM11lis 11,XMM13s 12,XMM13s 13,XMM14s 14 andXMM15s 15.

Control registersCROis 0,CR2is 2,CR3is 3, andCR4is 4.

Control register extension€R8is 8.

Debug registerddRO0is 0,DR1is 1,DR2is 2,DR3is 3,DR6is 6, andDR7is 7.
Test registersTR3is 3, TR4is 4, TR5is 5,TR6is 6, andTR7is 7.

(Note that wherever a register name contains a number, that number is also the register value
for that register.)

Condition Codes

The available condition codes are given here, along with their numeric representations as part
of opcodes. Many of these condition codes have synonyms, so several will be listed at a time.

In the following descriptions, the word ‘either’, when applied to two possible trigger conditions,
is used to mean ‘either or both’. If ‘either but not both’ is meant, the phrase ‘exactly one of’ is
used.

Ois 0 (trigger if the overflow flag is setNOis 1.

B, CandNAEare 2 (trigger if the carry flag is se\E, NBandNCare 3.

E andZ are 4 (trigger if the zero flag is setfEandNZ are 5.

BE andNAare 6 (trigger if either of the carry or zero flags is se&tgndNBEare 7.
Sis 8 (trigger if the sign flag is setNSis 9.

P andPEare 10 (trigger if the parity flag is set{PandPOare 11.

L andNGEare 12 (trigger if exactly one of the sign and overflow flags is €&BandNL
are 13.

LE andNGare 14 (trigger if either the zero flag is set, or exactly one of the sign and overflow
flags is set)GandNLEare 15.

Note that in all cases, the sense of a condition code may be reversed by changing the low bit of
the numeric representation.

21

A.2.3

For details of when an instruction sets each of the status flags, see the individual instruction,
plus the Status Flags reference in section A.2.4

SSE Condition Predicates

The condition predicates for SSE comparison instructions are the codes used as part of the
opcode, to determine what form of comparison is being carried out. In each case, the imm8
value is the final byte of the opcode encoding, and the predicate is the code used as part of
the mnemonic for the instruction (equivalent to the "cc" in an integer instruction that used a
condition code). The instructions that use this will give details of what the various mnemonics
are, this table is used to help you work out details of what is happening.

Predi- imm8 Description Relation where: Emula- Result QNaN

cate Encod- A Is 1st Operand tion if NaN Signal
ing B Is 2nd Operand Operand Invalid
EQ 000B equal A=B False No
LT 001B less-than A<B False Yes
LE 010B less-than- A<=B False Yes
or-equal
--- --—- greater A>B Swap False Yes
than Operands,
Use LT
--- --—- (Qreater- A>=B Swap False Yes
than-or-equal Operands,
Use LE

UNORD 011B unordered A, B =Unordered True No

NEQ 100B not-equal A!=B True No

NLT 101B not-less- NOT(A < B) True Yes
than

NLE 110B not-less- NOT(A <= B) True Yes
than-or-
equal

--- --—-- not-greater NOT(A > B) Swap True Yes

than Operands,
Use NLT
--- - not-greater NOT(A >= B) Swap True Yes
than- Operands,
or-equal Use NLE

22

A.2.4

A.2.5

ORD 111B ordered A, B = Ordered False No

The unordered relationship is true when at least one of the two values being compared is a NaN
or in an unsupported format.

Note that the comparisons which are listed as not having a predicate or encoding can only be
achieved through software emulation, as described in the "emulation” column. Note in particular
that an instruction such ageater-than is not the same aNLE, as, unlike with theCMP
instruction, it has to take into account the possibility of one operand containing a NaN or an
unsupported numeric format.

Status Flags

The status flags provide some information about the result of the arithmetic instructions. This
information can be used by conditional instructions (sucbcas andCMOVcg as well as by
some of the other instructions (suchAB3CandINTO).

There are 6 status flags:
CF - Carry flag.

Set if an arithmetic operation generates a carry or a borrow out of the most-significant bit of
the result; cleared otherwise. This flag indicates an overflow condition for unsigned-integer
arithmetic. It is also used in multiple-precision arithmetic.

PF - Parity flag.
Setif the least-significant byte of the result contains an even number of 1 bits; cleared otherwise.
AF - Adjust flag.

Set if an arithmetic operation generates a carry or a borrow out of bit 3 of the result; cleared
otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF - Zero flag.
Set if the result is zero; cleared otherwise.
SF - Sign flag.

Set equal to the most-significant bit of the result, which is the sign bit of a signed integer. (0
indicates a positive value and 1 indicates a negative value.)

OF - Overflow flag.

Set if the integer result is too large a positive number or too small a negative number (excluding
the sign-bit) to fit in the destination operand; cleared otherwise. This flag indicates an overflow
condition for signed-integer (two's complement) arithmetic.

Control Flags

Control Flags control aspects of the CPU's operation. In the 16-bit FLAGS register there are 3
such flags supported on all CPUs down to the 8086. They are:

23

A25.1

A.2.5.2

A.2.5.3

A.2.6

IF - Interrupt flag

If set, enables hardware interrupts (IRQs) to be serviced by the CPU. Note thata MOV or POP
to SS (see section A.5.156 and section A.5.244) disables hardware interrupt servicing and Trace
flag tracing until after the next instruction, to allow atomic setting of both SS and SP at the same
time. (There is a bug that makes this interrupt lockout fail on early 8086/8088 CPUs, which is
why 8086-compatible code that sets SS and SP usually also clears the Interrupt flag explicitly
first.)

DF - Direction flag

If set (called DN ‘Down’), string operations such as MOVSx (section A.5.178) decrement their
index registers, (E)SI and/or (E)DI. If clear (called UP), which is the usual default state, the
string operations increment their index registers.

TF - Trace flag

If set, the CPU will invoke the Trace interrupt (interrupt 1) after the next instruction. There are
a few special cases:

» Other interrupt invocations ignore the prior Trace flag status. That is, interrupts are not
traced.

» After an interrupt invocation, the IRET (see section A.5.127) restores TF=1, but the Trace
interrupt is then only called after another instruction. That is, the Trace interrupt ‘fires too
late’.

* Wheninterrupt lockout due to MOV or POP to SSis in effect, no Trace interrupt is invoked.

* When arepeated string operation is invoked, at most one iteration is executed. (E)IP is reset
in case more iterations are to be executed.

If (E)CX was greater than 1, and (for CMPSx and SCASKX) after the first comparison the
Zero flag is set or clear so as to repeat the operation, the (E)IP address is reset to point to
the first prefix opcode and then a Trace interrupt is invoked.

When (E)CX was 1 prior to the instruction, or the Zero flag after the comparison indicates
to break out of the repetition, then one iteration is executed, (E)IP is not reset, and a Trace
interrupt is invoked.

When (E)CX was 0 prior to the instruction, then no iteration is executed, but (E)IP is still
incremented to point after the instruction, and a Trace interrupt is invoked.

Effective Address Encoding: ModR/M and SIB

An effective address is encoded in up to three parts: a ModR/M byte, an optional SIB byte, and
an optional byte, word or doubleword displacement field.

The ModR/M byte consists of three fields: theod field, ranging from 0 to 3, in the upper

two bits of the byte, the/m field, ranging from 0 to 7, in the lower three bits, and the spare
(register) field in the middle (bit 3 to bit 5). The spare field is not relevant to the effective address
being encoded, and either contains an extension to the instruction opcode or the register value
of another operand.

24

A.26.1

A.2.6.2

A.2.6.3

ModR/M encoding a register

The ModR/M system can be used to encode a direct register reference rather than a memory
access. This is always done by settingtiad field to 3 and the/m field to the register value

of the register in question (it must be a general-purpose register, and the size of the register must
already be implicit in the encoding of the rest of the instruction). In this case, the SIB byte and
displacement field are both absent.

Memory al6 ModR/M encoding

In 16-bit addressing mode (eithBITS 16 withno67 prefix, orBITS 32 with a67 prefix),
the SIB byte is never used. The general rulesnimd andr/m (there is an exception, given
below) are:

» Themodfield gives the length of the displacement field: 0 means no displacement, 1 means
one byte, and 2 means two bytes.

 Ther/m field encodes the combination of registers to be added to the displacement to
give the accessed address: 0 meBKsSI, 1 meandBX+DI, 2 meandBP+SI, 3 means
BP+DI, 4 meansS| only, 5 mean®l only, 6 mean8P only, and 7 meanBXonly.

However, there is a special case:

* If modis 0 andr/m is 6, the effective address encoded is [&®] as the above rules
would suggest, but insteddispl6] : the displacement field is present and is two bytes
long, and no registers are added to the displacement.

Therefore the effective addrel®8P] cannot be encoded as efficiently[BX] ; so if you code
[BP] inaprogram, NASM adds a notional 8-bit zero displacement, andrsmd$o 1,r/m to
6, and the one-byte displacement field to 0.

If BPis used in an address then the default segment regis$& ®therwise, it iDS
Memory a32 ModR/M and SIB encoding

In 32-bit addressing mode (eithBITS 16 with a67 prefix, orBITS 32 with no67 prefix)
the general rules (again, there are exceptionsiiod andr/m are:

» Themodfield gives the length of the displacement field: 0 means no displacement, 1 means
one byte, and 2 means four bytes.

» Ifonly oneregisteris to be added to the displacement, and it E&Btther/m field gives
its register value, and the SIB byte is absent. Ifttme field is 4 (which would encode
ESP), the SIB byte is present and gives the combination and scaling of registers to be added
to the displacement.

If the SIB byte is present, it describes the combination of registers (an optional base register, and
an optional index register scaled by multiplication by 1, 2, 4 or 8) to be added to the displacement.
The SIB byte is divided into thecale field, in the top two bits, thendex field in the next

three, and théase field in the bottom three. The general rules are:

* Thebase field encodes the register value of the base register.
» Theindex field encodes the register value of the index register, unless it is 4, in which
case no index register is used 8Pcannot be used as an index register). Ifa 4 is encoded

25

then thescale field is ignored.

» Thescale field encodesthe multiplier by which the index register is scaled before adding
it to the base and displacement: 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and
3 encodes 8.

The exceptions to the 32-bit encoding rules are:

* If modis 0 andr/m is 5, the effective address encoded is [i¥kBP] as the above rules
would suggest, but insteqdisp32] : the displacement field is present and is four bytes
long, and no registers are added to the displacement.

 If modis O, r/m is 4 (meaning the SIB byte is present) doaise is 5, the effective
address encoded is nfiEBP+index] as the above rules would suggest, but instead
[disp32+index] : the displacement field is present and is four bytes long, and there is
no base register (but the index register is still processed in the normal way).

* Note that if the prior exception applies, then thdex register field can also be encoded
as 4. This combines the two special cases, resulting in a longer encodutigad2]
without any registers. (This longer encoding differs only in a 64-bit code segment from the
shortmod=0 r/m=5 encoding ofdisp32] .)

If EBPor ESPis used as the base register in an address then the default segment reg§i&ter is
Otherwise, it iDS (The use of these registers correspondgto =5 orbase =5 or 4, except
for the special cases withod=0.)

A.2.7 Instruction Prefixes
A.2.7.1 8086 Instruction Prefixes
The 8086 instruction prefixes come in three groups:
* Segment overrides
» String instruction repeat
« LOCK
A.2.7.1.1 8086 Segment Overrides

The following opcode bytes are used as 8086 segment override prefixes:

ES . 26 [8086]
cS - 2E [8086]
SS . 36 [8086]
DS - 3E [8086]

These prefixes can be used to override the segment register used to access an explicit memory
operand, or the implicit "source" operand of the following instructions:

« XLATB
« LODS
« MOVSource

26

A2.7.1.2

A.2.7.1.3

A.2.7.2

A.2.7.3

» CMPS'source” (actually first operand of equivalé€@®MPpseudocode instruction)
« OUTS

The implicit memory operands of the following instructions cannot have their segment
overridden:

« STOS

 SCAS

* MOVSlestination

» CMPS'destination” (actually second operand of equivalénMPpseudocode instruction)
* INS

 PUSHPOR and more stack accesses. (If an explicit memory operand is used, its segment
can still be overridden.)

» Code fetch using CS and (E)IP
8086 Repeat Prefixes

The following opcode bytes are used as 8086 repeat prefixes:

REPE ' F3 [8086]
REPZ - F3 [8086]
REPNE L F2 [8086]
REPNZ FF2 [8086]
REP - F3 [8086]

They can be used to indicate repetition of the string instructib@®S STOS SCAS MOVS
CMPSINS, andOUTS SCASandCMP Sre the only ones for whidREPEdiffers in behaviour
from REPNE

For NASM and IDebug's line assemblBf-Pis synonymous tREPE REPZis a synonym for
REPE andREPNZikewise forREPNE

8086 LOCK Prefix
LOCK = [8086]

The lock prefix can be used on Read-Modify-Write instructions that both read and write to the
same explicit memory operand. Using the lock prefix on instructions without an RMW memory
operand is invalid.

286 Instruction Prefixes

The 286 adds OFh (originally considered the opcodeHOP C$ as a prefix of sorts. It
introduces a longer instruction with at least one more opcode byte after the OFh prefix.
Instructions involving the OFh prefix are expanded in this reference with the prefix included.

386 Instruction Prefixes
FS . 64 [386]
GS . 65 [386]

27

A.2.8

OSIZE 66 [386]
ASIZE - 67 [386]

The 386 adds four prefixes.

The two new segment overrides can be used like the 8086 segment overrides. (On the 386 using
these prefixes is the only way to access memory using the FS or GS segment registers.)

The OSIZE and ASIZE switch the operand size and address size to the non-default size. In a
16-bit CS they're called 032 and A32, and their presence indicates 32-bit operand size or 32-bit
address size. In a 32-bit CS they're conversely called 016 and A16 and indicate 16-bit operand
or address size. (Multiple of the same size prefixes do not repeatedly toggle the indicated size.
Rather the presence of redundant prefixes is handled just the same as if this prefix occurred only
once.)

Register Extensions: The REX Prefix

The Register Extensions, or REX for short, prefix is the means of accessing extended registers
on the x86-64 architecture. REX is considered an instruction prefix, butis required to be after all
other prefixes and thus immediately before the first instruction opcode itself. So overall, REX
can be thought of as an "Opcode Prefix" instead. The REX prefix itself is indicated by a value
of Ox4X, where X is one of 16 different combinations of the actual REX flags.

The REX prefix flags consist of four 1-bit extensions fields. These flags are found in the lower
nibble of the actual REX prefix opcode. Below is the list of REX prefix flags, from high bit to
low bit.

REX.W When set, this flag indicates the use of a 64-bit operand, as opposed to the default of
using 32-bit operands as found in 32-bit Protected Mode.

REX.R: When set, this flag extends theg (spare) field of the ModR/M byte. Overall, this
raises the amount of addressable registers in this field from 8 to 16.

REX.X: When set, this flag extends thedex field of theSIB byte. Overall, this raises the
amount of addressable registers in this field from 8 to 16.

REX.B: When set, this flag extends thén field of the ModR/M byte. This flag can also
represent an extension to the opcode regigte) ield. The determination of which is used
varies depending on which instruction is used. Overall, this raises the amount of addressable
registers in these fields from 8 to 16.

Internal use of the REX prefix by the processor is consistent, yet non-trivial. Most instructions
use the REX prefix as indicated by the above flags. Some instructions require the REX prefix to
be present even if the flags are empty. Some instructions default to a 64-bit operand and require
the REX prefix only for actual register extensions, and thus ignordExeWfield completely.

At any rate, NASM is designed to handle, and fully supports, the REX prefix internally. Please
read the appropriate processor documentation for further information on the REX prefix.

You may have noticed that opcodes 0x40 through Ox4F are actually opcodes for the INC/DEC
instructions for each General Purpose Register. This s, of course, correct... forlegacy x86. While
in long mode, opcodes 0x40 through Ox4F are reserved for use as the REX prefix. The other
opcode forms of the INC/DEC instructions are used instead.

28

A.3 Key to Instruction Flags

Given along with each instruction in this appendix is a set of flags, denoting the type of the
instruction. The types are as follows:

8086, 186,286, 386,486, PENTandP6 denote the lowest processor type that supports
the instruction. Most instructions run on all processors above the given type; those that
do not are documented. The Pentium Il contains no additional instructions beyond the P6
(Pentium Pro); from the point of view of its instruction set, it can be thought of as a P6
with MMX capability.

3DNOWAdicates that the instruction is a 3DNow! one, and will run on the AMD K6-2 and
later processors. ATHLON extensions to the 3DNow! instruction set are documented as
such.

CYRIX indicates that the instruction is specific to Cyrix processors, for example the extra
MMX instructions in the Cyrix extended MMX instruction set.

FPUindicates that the instruction is a floating-point one, and will only run on machines
with a coprocessor (automatically including 486DX, Pentium and above).

KATMAIlindicates that the instruction was introduced as part of the Katmai New Instruction
set. These instructions are available on the Pentium Il and later processors. Those which
are not specifically SSE instructions are also available on the AMD Athlon.

MMMndicates that the instruction is an MMX one, and will run on MMX-capable Pentium
processors and the Pentium II.

PRIV indicates that the instruction is a protected-mode management instruction. Many of
these may only be used in protected mode, or only at privilege level zero.

SSEandSSE2indicate that the instruction is a Streaming SIMD Extension instruction.
These instructions operate on multiple values in a single operation. SSE was introduced
with the Pentium Il and SSE2 was introduced with the Pentium 4.

UNDOGndicates that the instruction is an undocumented one, and not part of the official
Intel Architecture; it may or may not be supported on any given machine.

WILLAMETTENdicates that the instruction was introduced as part of the new instruction
setin the Pentium 4 and Intel Xeon processors. These instructions are also known as SSE2
instructions.

X64 indicates that the instruction was introduced as part of the new instruction set in the
x86-64 architecture extension, commonly referred to as x64, AMD64 or EM64T.

A.4 Emulator notes

A.4.1 Common corner cases

POPto CSisinvalid, and used by 286+ CPUs as prefix byte for two-byte instructions. Some
8086s may actually implement it however. It is unclear how this interacts with the prefetch
gueue, which is known to be purged by ev8MP, CALL, interrupt, or return instruction.

LEA has to encode a memory reference as source operand, and thus not a register.

29

 MOMo and from segregs can encode invalid non-existent segment registers beyond DS, or
(on a 386+) beyond GS.

» MOMo a segreg mustn't encode CS as destination. BiR&to CS, the prefetch queue
behaviour is uncertain.

* HLT should cause the machine to halt, ideally until the next hardware interrupt occurs. It
may however simply cause the machine to sleep or give up a timeslice in a multitasker.
Failing even that is in error.

» SHL and other shift and rotate instructions mask the shift count (either from CL or the
immediate operand) with 31 on 186+ machines, except NEC V20/V30. The latter, and
8088/8086, use the entire shift count.

* On the 8088/8086, the divide by zero interrupt points behind the instruction that caused
the exception. Otherwise, it points at the instruction.

* AADandAAMacceptimmediate bytes other than 10 on some machines, but not on the NEC
V20/V30.

* Interrupt 6 (Invalid opcode) didn't exist on the 8088/8086. Unsupported instructions may
behave as one- or two-byte no-ops or otherwise oddly.

* Interrupt lockout afteMOVor POPto SS is described in the Control Flags description of
the Interrupt Flag, section A.2.5.1.

* Proper repeated string operations tracing is described in the Control Flags description of
the Trace Flag, section A.2.5.3.

A.4.2 Emulator call encodings

* NTVDM usesC4 C4 (LES with a register source) followed by one or two callback
identifier bytes.

» DOSBox use$E 38 (invalid encoding with /7) followed by a callback identifier word.
» dosemu?2 usedLT and dispatches based on the address ofithEe
» 8086tiny use9F followed by one identifier byte, currently in the ran@@ to 04.

A.5 Xx86 Instruction Set
A.5.1 AAA AAS AAM AAD ASCII Adjustments

AAA ; 37 [8086]
AAS ; 3F [8086]
AAD ; D5 0A [8086]
AAD imm8 ;D5 ib [8086]
AAM ; D4 0A [8086]
AAM imm8 ; D4 ib [8086]

These instructions are used in conjunction with the add, subtract, multiply and divide
instructions to perform binary-coded decimal arithmetiampackedone BCD digit per byte -

30

easy to translate to and froASCIl , hence the instruction names) form. There are also packed
BCD instructiondAAandDAS see section A.5.57.

* AAA(ASCII Adjust After Addition) should be used after a one-b&@Dinstruction whose
destination was thAL register: by means of examining the value in the low nibblalof
and also the auxiliary carry flaF, it determines whether the addition has overflowed, and
adjusts it (and sets the carry flag) if so. You can add long BCD strings together by doing
ADDAAAoOnN the low digits, then doingDGAAAoN each subsequent digit.

* AAS(ASCII Adjust AL After Subtraction) works similarly tBAA but is for use afte6UB
instructions rather thaADD

* AAM(ASCII Adjust AX After Multiply) is for use after you have multiplied two decimal
digits together and left the result AL: it dividesAL by ten and stores the quotientAdd
leaving the remainder IAL. The divisor 10 can be changed by specifying an operand to
the instruction: a particularly handy use of thigfdM 16 causing the two nibbles iAL
to be separated intAHandAL. Note that the divisor immediate byte is ignored by some
implementations such as the NEC V20/V30, which always use 10 as divisor.

* AAD (ASCII Adjust AX Before Division) performs the inverse operation A&M it
multiplies AHby ten, adds it téAL, and setAHto zero. Again, the multiplier 10 can be
changed on some implementations.

A.5.2 ADC Add with Carry

ADC r/m8,reg8 ;10 /r [8086]
ADC r/m16,regl6 ;016 11 /r [8086]
ADC r/m32,reg32 ;032 11 /r [386]
ADC reg8,r/m8 ;12 1r [8086]
ADC regl16,r/m16 ;016 13 /r [8086]
ADC reg32,r/m32 ;032 13 /r [386]
ADC r/m8,imm8 ;80 /2 ib [8086]
ADC r/m16,imm16 ; 016 81 /2 iw [8086]
ADC r/m32,imm32 ;03281 /2 id [386]
ADC r/m16,imm8 ;016 83 /2 ib [8086]
ADC r/m32,imm8 ;03283 /21ib [386]
ADC AL,imm8 ; 14 ib [8086]
ADC AX,imm16 ; 016 15 iw [8086]
ADC EAX,imm32 ;032 15 id [386]

ADCperforms integer addition: it adds its two operands together, plus the value of the carry flag,
and leaves the result in its destination (first) operand. The destination operand can be a register
or amemory location. The source operand can be a register, amemory location or an immediate
value.

The flags are set according to the result of the operation: in particular, the carry flag is affected
and can be used by a subsequ&DCinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The

31

A.5.3

AS5.4

BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tf8&TRICT WORDr STRICT DWORAQBualifier.

To add two numbers without also adding the contents of the carry flag\RBésection A.5.3).
ADD Add Integers

ADD r/m8,reg8 ; 00 /r [8086]
ADD r/m16,regl6 ;016 01 /r [8086]
ADD r/m32,reg32 ;03201 /r [386]
ADD reg8,r/m8 ; 02 /r [8086]
ADD regl16,r/m16 ; 016 03 /r [8086]
ADD reg32,r/m32 ;032 03 /r [386]
ADD r/m8,imm3 ;80 /7 ib [8086]
ADD r/m16,imm16 ; 016 81 /7 iw [8086]
ADD r/m32,imm32 ;03281 /7id [386]
ADD r/m16,imm8 ;01683/71b [8086]
ADD r/m32,imm8 ;03283/71b [386]
ADD AL,imm8 ; 04 ib [8086]
ADD AX,imm16 ; 016 05 iw [8086]
ADD EAX,imm32 ;03205 id [386]

ADDperforms integer addition: it adds its two operands together, and leaves the result in its
destination (first) operand. The destination operand can be a register or a memory location. The
source operand can be a register, a memory location or an immediate value.

The flags are set according to the result of the operation: in particular, the carry flag is affected
and can be used by a subsequ&DCinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tf8&TRICT WORDr STRICT DWORAQBualifier.

ADDPDADD Packed Double-Precision FP Values
ADDPD xmm1,xmm2/mem128 ;66 OF 58 /r [WILLAMETTE,SSE?]
ADDPDperforms addition on each of two packed double-precision FP value pairs.

dst[0-63] :=dst[0-63] + src[0-63],
dst[64-127] := dst[64-127] + src[64-127].

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

32

A.5.5

A.5.6

A.5.7

A.5.8

ADDPSADD Packed Single-Precision FP Values
ADDPS xmm1,xmm2/mem128 ; OF 58 /r [KATMAI,SSE]
ADDPSerforms addition on each of four packed single-precision FP value pairs

dst[0-31] :=dst[0-31] + src[0-31],
dst[32-63] := dst[32-63] + src[32-63],
dst[64-95] := dst[64-95] + src[64-95],
dst[96-127] := dst[96-127] + src[96-127].

The destination is akMMegister. The source operand can be eithexibegister or a 128-
bit memory location.

ADDSDADD Scalar Double-Precision FP Values
ADDSD xmm1,xmm2/mem64 F20F 58 /r [KATMAI,SSE]

ADDS[adds the low double-precision FP values from the source and destination operands and
stores the double-precision FP result in the destination operand.

dst[0-63] := dst[0-63] + src[0-63],
dst[64-127] remains unchanged.

The destination is aXKMMregister. The source operand can be eitheXiiMegister or a 64-
bit memory location.

ADDSSADD Scalar Single-Precision FP Values
ADDSS xmm1,xmm2/mem32 ;F30F 58 /r [WILLAMETTE,SSEZ?]

ADDSSadds the low single-precision FP values from the source and destination operands and
stores the single-precision FP result in the destination operand.

dst[0-31] :=dst[0-31] + src[0-31],
dst[32-127] remains unchanged.

The destination is akMMegister. The source operand can be eitheXisiMegister or a 32-
bit memory location.

AND Bitwise AND

AND r/m8,reg8 ; 20 /r [8086]
AND r/m16,reg16 ;016 21 /r [8086]
AND r/m32,reg32 ;03221 Ir [386]
AND reg8,r/m8 ;22 1r [8086]
AND reg16,r/m16 ;016 23 /r [8086]
AND reg32,r/m32 ;032 23 Ir [386]
AND r/m8,imm8 ;80/41b [8086]
AND r/m16,imm16 ;016 81 /4 iw [8086]
AND r/m32,imm32 ;03281 /4id [386]
AND r/m16,imm8 ;016 83 /4 ib [8086]

33

A.5.9

A.5.10

AND r/m32,imm8 ;03283/41b [386]

AND AL,imm8 ; 24 ib [8086]
AND AX,imm16 ; 016 25 iw [8086]
AND EAX,imm32 ;03225id [386]

ANDperforms a bitwise AND operation between its two operands (i.e. each bit of the result is
1 if and only if the corresponding bits of the two inputs were both 1), and stores the result in
the destination (first) operand. The destination operand can be a register or a memory location.
The source operand can be a register, a memory location or an immediate value.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tI&TRICT WORDr STRICT DWORDBualifier.

The Carry Flag is cleared BAND The Zero Flag is set according to whether the result is zero.

The TEST (see section A.5.317) instruction performs the same operatiégiN&but without
writing to the destination operand. That is, it only reads the operands and writes the status flags.

TheMMXnstructionPAND(see section A.5.202) performs the same operation on the 4%
registers.

ANDNPDBItwise Logical AND NOT of Packed Double-Precision FP
Values

ANDNPD xmm1,xmm2/mem128 ;66 OF 55 /r [WILLAMETTE,SSEZ2]

ANDNPDnverts the bits of the two double-precision floating-point values in the destination
register, and then performs a logical AND between the two double-precision floating-point
values in the source operand and the temporary inverted result, storing the result in the
destination register.

dst[0-63] :=src[0-63] AND NOT dst[0-63],
dst[64-127] := src[64-127] AND NOT dst[64-127].

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

ANDNPS Bitwise Logical AND NOT of Packed Single-Precision FP
Values

ANDNPS xmm1,xmm2/mem128 ; OF 55 /r [KATMAI,SSE]

ANDNPSnverts the bits of the four single-precision floating-point values in the destination
register, and then performs a logical AND between the four single-precision floating-point
values in the source operand and the temporary inverted result, storing the result in the
destination register.

dst[0-31] :=src[0-31] AND NOT dst[0-31],
dst[32-63] :=src[32-63] AND NOT dst[32-63],

34

dst[64-95] :=src[64-95] AND NOT dst[64-95],
dst[96-127] := src[96-127] AND NOT dst[96-127].

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

A.5.11 ANDPDBitwise Logical AND For Single FP
ANDPD xmm1,xmm2/mem128 ;66 OF 54 /r [WILLAMETTE,SSEZ2]

ANDPDperforms a bitwise logical AND of the two double-precision floating point values in the
source and destination operand, and stores the result in the destination register.

dst[0-63] :=src[0-63] AND dst[0-63],
dst[64-127] := src[64-127] AND dst[64-127].

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

A.5.12 ANDPSBitwise Logical AND For Single FP
ANDPS xmm1,xmm2/mem128 ; OF 54 /r [KATMAI,SSE]

ANDP S$erforms a bitwise logical AND of the four single-precision floating point values in the
source and destination operand, and stores the result in the destination register.

dst[0-31] :=src[0-31] AND dst[0-31],
dst[32-63] :=src[32-63] AND dst[32-63],
dst[64-95] :=src[64-95] AND dst[64-95],
dst[96-127] := src[96-127] AND dst[96-127].

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

A.5.13 ARPL Adjust RPL Field of Selector
ARPL r/m16,reg16 ; 63 /r [286,PRIV]

ARPL expects its two word operands to be segment selectors. It adjus&Pihé&equested
privilege level - stored in the bottom two bits of the selector) field of the destination (first)
operand to ensure that it is no less (i.e. no more privileged tharRifield of the source
operand. The zero flag is set if and only if a change had to be made.

A.5.14 BOUNDCheck Array Index against Bounds

BOUND regl16,mem ; 016 62 /r [186]
BOUND reg32,mem ; 032 62 Ir [386]

BOUNI2xpects its second operand to point to an area of memory containing two signed values
of the same size as its first operand (i.e. two words for the 16-bit form; two doublewords for the
32-bit form). It performs two signed comparisons: if the value in the register passed as its first
operand is less than the first of the in-memory values, or is greater than or equal to the second,
it throws aBRexception. Otherwise, it does nothing.

35

A.5.15 BSF BSR Bit Scan

A.5.16

A.5.17

BSF regl16,r/m16
BSF reg32,r/m32

BSR reg16,r/m16
BSR reg32,r/m32

: 016 OF BC /r
1032 0F BC /Ir

:016 OF BD /r
:0320FBD Ir

[386]
[386]

[386]
[386]

» BSFsearches for the least significant set bit in its source (second) operand, and if it finds
one, stores the index in its destination (first) operand. If no set bit is found, the contents of
the destination operand are undefined. If the source operand is zero, the zero flag is set.

* BSRperforms the same function, but searches from the top instead, so it finds the most

significant set bit.

Bit indices are from O (least significant) to 15 or 31 (most significant). The destination operand
can only be a register. The source operand can be a register or a memory location.

BSWAPByte Swap

BSWAP reg32

1032 OF C8+r

[486]

BSWARwaps the order of the four bytes of a 32-bit register: bits 0-7 exchange places with bits
24-31, and bits 8-15 swap with bits 16-23. There is no explicit 16-bit equivalent: to byte-swap
AX, BX, CXor DX XCHGan be used. WheBSWARs used with a 16-bit register, the result is

undefined.

BT, BTC BTR BTS: Bit Test

BT r/m16,reg16
BT r/m32,reg32
BT r/m16,imm38
BT r/m32,imm8

BTC r/m16,reg16
BTC r/m32,reg32
BTC r/m16,imm8
BTC r/m32,imm8

BTR r/m16,reg16
BTR r/m32,reg32
BTR r/m16,imm8
BTR r/m32,imm8

BTS r/m16,regl6
BTS r/m32,reg32
BTS r/m16,imm8
BTS r/m32,imm8

;016 OF A3 /r
1032 0F A3 /r
;016 OF BA /4 ib
:0320FBA/4ib

;016 OF BB /r
:0320F BB Ir
;016 OF BA /7 ib
:0320FBA /7 ib

:016 OF B3 /r
:0320F B3 /r
;016 OF BA /6 ib
:0320F BA/6ib

: 016 OF AB /r
;032 OF AB /r
;016 OF BA/5ib
:0320F BA/5ib

[386]

[386]
[386]
[386]

[386]

[386]
[386]
[386]

[386]

[386]
[386]
[386]

[386]

[386]
[386]
[386]

These instructions all test one bit of their first operand, whose index is given by the second
operand, and store the value of that bit into the carry flag. Bitindices are from 0 (least significant)
to 15 or 31 (most significant).

In addition to storing the original value of the bit into the carry flBgjRalso resets (clears) the

36

A.5.18

bit in the operand itselBTSsets the bit, anBTCcomplements the biBT does not modify its
operands.

The destination can be a register or a memory location. The source can be a register or an
immediate value.

If the destination operand is a register, the bit offset should be in the range 0-15 (for 16-bit
operands) or 0-31 (for 32-bit operands). An immediate value outside these ranges will be taken
modulo 16/32 by the processor.

If the destination operand is a memory location, then an immediate bit offset follows the same
rules as for a register. If the bit offset is in a register, then it can be anything within the signed
range of the register used (ie, for a 32-bit operand, it can be (-2"31) to (2731 - 1)).

CALL: Call Subroutine

CALL imm ; E8 rwi/rd [8086]
CALL imm:imm16 ; 016 9A iw iw [8086]
CALL imm:imm32 ; 032 9A id iw [386]
CALL FAR mem16 ;016 FF /3 [8086]
CALL FAR mem32 ; 032 FF /3 [386]
CALL r/m16 ; 016 FF /2 [8086]
CALL r/m32 ; 032 FF /2 [386]

CALLcalls asubroutine, by means of pushing the current instruction poiRteand optionally
CSas well on the stack, and then jumping to a given address.

CSis pushed as well d® if and only if the call is a far call, i.e. a destination segment address
is specified in the instruction. The forms involving two colon-separated arguments are far calls;
so are theCALL FAR menforms.

The immediate near call takes one of two forr@A(LL imm16/imm32), determined by the
current segment size limit. For 16-bit operands, you would@iskeL 0x1234 , and for 32-bit
operands you would useALL 0x12345678 . The value passed as an operand is a relative
offset.

You can choose between the two immediate far call forr@ALL imm:imm) by
the use of the WORDand DWORDkeywords: CALL WORD 0x1234:0x5678 or
CALL DWORD 0x1234:0x56789abc .

TheCALL FAR merforms execute afar call by loading the destination address out of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand size), and
16 bits of segment. The operand size may be overridden &kig. WORD FAR meam

CALL DWORD FAR mem

TheCALL r/m forms execute a near call (within the same segment), loading the destination
address out of memory or out of a register. The keywhiHAR may be specified, for
clarity, in these forms, but is not necessary. Again, operand size can be overridden using
CALL WORD memCALL DWORD mem

As a convenience, NASM does not require you to call a far procedure symbol by coding
the cumbersom€ALL SEG routine:routine , but instead allows the easier synonym
CALL FAR routine

37

A.5.19

A.5.20

A5.21

A.5.22

A.5.23

CBWCWDCDQ CWDESign Extensions

CBW ;016 98 [8086]
CWDE . 032 98 [386]
CWD ;016 99 [8086]
CDQ £ 032 99 [386]

All these instructions sign-extend a short value into a longer one, by replicating the top bit of
the original value to fill the extended one.

CBWextendsAL into AX by repeating the top bit oAL in every bit of AH CWDExtendsAX
into EAX CWxtendsAXinto DX:AX by repeating the top bit giXthroughoutDX andCDQ
extendsEAXinto EDX:EAX

CLC CLD, CLI, CLTS: Clear Flags

CLC . F8 [8086]

CLD ' FC [8086]

CLI - FA [8086]

CLTS : OF 06 [286,PRIV]

These instructions clear various flagd.Cclears the carry flagiLDclears the direction flag;
CLI clearsthe interrupt flag (thus disabling interrupts); @hd Sclears the task-switched$)
flag inCRQ

To set the carry, direction, or interrupt flags, use #1&C, STDandST]I instructions (section
A.5.301). To invert the carry flag, us&Msection A.5.22).

CLFLUSH Flush Cache Line
CLFLUSH mem :0F AE /7 [WILLAMETTE,SSEZ?]

CLFLUSHinvalidates the cache line that contains the linear address specified by the source
operand from all levels of the processor cache hierarchy (data and instruction). If, at any level of
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory before
invalidation. The source operand points to a byte-sized memory location.

AlthoughCLFLUSHis flaggedSSE2and above, it may not be present on all processors which
haveSSE2support, and it may be supported on other processor€RhHDinstruction (section
A.5.34) will return a bit which indicates support for td FLUSHinstruction.

CMCComplement Carry Flag

CMC ; F5 [8086]

CMQChanges the value of the carry flag: if it was O, it sets it to 1, and vice versa.
CMOVcc Conditional Move

CMOVcc regl6,r/m16 ; 016 OF 40+cc/r [P6]
CMOVcc reg32,r/m32 ; 032 OF 40+cc /r [P6]

CMOWhovesiits source (second) operand into its destination (first) operand if the given condition
code is satisfied; otherwise it does nothing.

38

A.5.24

A.5.25

For a list of condition codes, see section A.2.2.

Although theCMO\instructions are flaggeE6 and above, they may not be supported by all
Pentium Pro processors; tB@UIDinstruction (section A.5.34) will return a bit which indicates
whether conditional moves are supported.

CMP Compare Integers

CMP r/m8,reg8 ; 38 /r [8086]
CMP r/m16,reg16 ;016 39 /r [8086]
CMP r/m32,reg32 ;03239 /r [386]
CMP reg8,r/m8 ; 3Ar [8086]
CMP regl16,r/m16 ; 016 3B /r [8086]
CMP reg32,r/m32 ;032 3B /Ir [386]
CMP r/m8,imm8 ;80 /7 ib [8086]
CMP r/m16,imm16 ;016 81 /7 iw [8086]
CMP r/m32,imm32 ;03281 /7id [386]
CMP r/m16,imm8 ;016 83 /7 ib [8086]
CMP r/m32,imm8 ;03283 /71ib [386]
CMP AL,imm8 ;3Cib [8086]
CMP AX,imm16 ; 016 3D iw [8086]
CMP EAX,imm32 ;0323Did [386]

CMPperforms a ‘mental’ subtraction of its second operand from its first operand, and affects
the flags as if the subtraction had taken place, but does not store the result of the subtraction
anywhere. (For subtraction that does store the result, see section A.5.305.)

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tI8TRICT WORDr STRICT DWORDBualifier.

The destination operand can be a register or a memory location. The source can be a register,
memory location or an immediate value of the same size as the destination.

CMPccPD Packed Double-Precision FP Compare
CMPPD xmm1,xmm2/mem128,imm8 ; 66 OF C2 /rib [WILLAMETTE,SSEZ?]

CMPEQPD xmm1,xmm2/mem128 ;66 OF C2/r 00 [WILLAMETTE,SSEZ?]
CMPLTPD xmm1,xmm2/mem128 ;66 OF C2/r 01 [WILLAMETTE,SSEZ?]
CMPLEPD xmm1,xmm2/mem128 ;66 OF C2/r 02 [WILLAMETTE,SSEZ?]
CMPUNORDPD xmm1,xmm2/mem128 ; 66 OF C2/r 03 [WILLAMETTE,SSEZ?]
CMPNEQPD xmm1,xmm2/mem128 ;66 OF C2/r 04 [WILLAMETTE,SSEZ?]
CMPNLTPD xmm1,xmm2/mem128 ;66 OF C2 /r 05 [WILLAMETTE,SSEZ?]
CMPNLEPD xmm1,xmm2/mem128 ;66 OF C2/r 06 [WILLAMETTE,SSEZ]
CMPORDPD xmm1,xmm2/mem128 ;66 OF C2 /r 07 [WILLAMETTE,SSEZ2]

The CMPccPDinstructions compare the two packed double-precision FP values in the source

39

A.5.26

and destination operands, and returns the result of the comparison in the destination register. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is akMMegister. The source can be eitheddviMegister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. Th€ondition Predicates are:

EQ O Equal

LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less-than

NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

CMPccPS Packed Single-Precision FP Compare
CMPPS xmm1,xmm2/mem128,imm8 ;O0F C2/rib [KATMAI,SSE]

CMPEQPS xmm1,xmm2/mem128 ;O0F C2/r00 [KATMAI,SSE]
CMPLTPS xmm1,xmm2/mem128 ;O0F C2/r01 [KATMAI,SSE]
CMPLEPS xmml,xmm2/mem128 ;O0F C2/r02 [KATMAI,SSE]
CMPUNORDPS xmm1,xmm2/mem128 ;0F C2/r03 [KATMAI,SSE]
CMPNEQPS xmml1,xmm2/mem128 ;0F C2/r04 [KATMAISSE]
CMPNLTPS xmm1,xmm2/mem128 ;0F C2/r05 [KATMAI,SSE]
CMPNLEPS xmm1,xmm2/mem128 ;0F C2/r06 [KATMAISSE]
CMPORDPS xmml,xmm2/mem128 ;O0F C2/r07 [KATMAI,SSE]

The CMPccPSinstructions compare the two packed single-precision FP values in the source
and destination operands, and returns the result of the comparison in the destination register. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all Os (comparison
false).

The destination is akMMegister. The source can be eithedd@iMegister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. Th€ondition Predicates are:

EQ 0 Equal

LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered
NE 4 Not-equal

NLT 5 Not-less-than

40

NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

A.5.27 CMPSBCMPSWCMPSDCompare Strings

CMPSB . AB [8086]
CMPSW £ 016 A7 [8086]
CMPSD - 032 A7 [386]

CMPSBcompares the byte gDS:SI] or [DS:ESI] with the byte at[ES:DI] or
[ES:EDI] ,and sets the flags accordingly. It then increments or decrements (depending on the
direction flag: increments if the flag is clear, decrements if it is SetandDI (or ESI and

EDI).

The registers used a# andDI if the address size is 16 bits, a&&| andEDI if it is 32 bits.
If you need to use an address size not equal to the cuBi@& setting, you can use an explicit
al6 ora32 prefix.

The segment register used to load frf|i] or[ESI] can be overridden by using a segment
register name as a prefix (for exam@es CMPSPB The use oESfor the load fromDI] or
[EDI] cannot be overridden.

CMPSVEndCMPSDwork in the same way, but they compare a word or a doubleword instead
of a byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPEand REPNEprefixes (equivalentyREPZandREPNZ may be used to repeat the
instruction up taCX(or ECX- again, the address size chooses which) times until the first unequal
or equal element is found. To NASNREPIs an alias foREPE

A.5.27.1 Pseudo-code examples
alé CMPSBwithout segment override and with Direction Flag clear (UP) is equal to

CMP BYTE [SI], BYTE [ES:DI]
LEA SI, [SI + 1]
LEA DI, [DI + 1]

alé REPE CMPSWithout segment override and with Direction Flag clear (UP) is equal to

JCXZ @FF

@@:

CMP WORD [SI], WORD [ES:DI]
LEA SI, [SI + 2]

LEA DI, [DI + 2]

alé LOOPE @B

@O:

a32 ES CMPSDOvith Direction Flag set (DN) is equal to

CMP DWORD [ES:ESI], DWORD [ES:EDI]
LEA ESI, [ESI - 4]
LEA EDI, [EDI - 4]

41

A.5.28

A.5.29

CMPccSD Scalar Double-Precision FP Compare
CMPSD xmm1,xmm2/mem64,imm8 ; F2 OF C2/rib [WILLAMETTE,SSEZ2]

CMPEQSD xmm1,xmm2/mem64 ; F20F C2 /r 00 [WILLAMETTE,SSEZ?]
CMPLTSD xmm1,xmm2/mem64 ; F20F C2 /r 01 [WILLAMETTE,SSEZ?]
CMPLESD xmm1,xmm2/mem64 ; F20F C2 /r 02 [WILLAMETTE,SSEZ?]
CMPUNORDSD xmm1,xmm2/mem64 ; F2 OF C2 /r 03 [WILLAMETTE,SSEZ?]
CMPNEQSD xmm1,xmm2/mem64 ; F2 OF C2/r 04 [WILLAMETTE,SSEZ?]
CMPNLTSD xmm1,xmm2/mem64 ; F2 OF C2/r 05 [WILLAMETTE,SSEZ?]
CMPNLESD xmm1,xmm2/mem64 ; F2 O0F C2/r 06 [WILLAMETTE,SSEZ2]
CMPORDSD xmm1,xmm2/mem64 ; F2 OF C2 /r 07 [WILLAMETTE,SSEZ2]

TheCMPccSDOnstructions compare the low-order double-precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is aiMMegister. The source can be eithedd@iMegister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. Théondition Predicates are:

EQ 0 Equal

LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less-than

NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

CMPccSS Scalar Single-Precision FP Compare
CMPSS xmm1,xmm2/mem32,imm8 ; F3 OF C2 /rib [KATMAI,SSE]

CMPEQSS xmm1,xmm2/mem32 ; F30F C2 /r 00 [KATMAI,SSE]
CMPLTSS xmm1,xmm2/mem32 ; F30F C2 /r 01 [KATMAI,SSE]
CMPLESS xmm1,xmm2/mem32 ; F30F C2 /r 02 [KATMAI,SSE]
CMPUNORDSS xmm1,xmm2/mem32 ; F3 OF C2 /r 03 [KATMAI,SSE]
CMPNEQSS xmm1,xmm2/mem32 ; F3 OF C2/r 04 [KATMAI,SSE]
CMPNLTSS xmm1,xmm2/mem32 ; F3 0F C2/r 05 [KATMAI,SSE]
CMPNLESS xmm1,xmm2/mem32 ; F30F C2/r 06 [KATMAI,SSE]
CMPORDSS xmm1,xmm2/mem32 ; F3 0F C2/r 07 [KATMAI,SSE]

TheCMPccSSnstructions compare the low-order single-precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The

42

A.5.30

result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison
false).

The destination is aKMMegister. The source can be eithedd@iMegister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two-operand pseudo-instructions are provided,
with the third operand already filled in. Th€ondition Predicates are:

EQ O Equal

LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less-than

NLE 6 Not-less-than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, see section A.2.3

CMPXCHGCMPXCHG488Compare and Exchange

CMPXCHG r/m8,reg8 ;OF BO /r [PENT]
CMPXCHG r/m16,reg16 ; 016 OF B1 /r [PENT]
CMPXCHG r/m32,reg32 ;032 0F Bl /r [PENT]
CMPXCHG486 r/m8,reg8 ; OF A6 /r [486,UNDOC]
CMPXCHG486 r/m16,regl6 ; 016 OF A7 Ir [486,UNDOC]

CMPXCHG486 r/m32,reg32 : 032 OF A7 /r [486,UNDOC]

These two instructions perform exactly the same operation; however, apparently some (not all)
486 processors support it under a non-standard opcode, so NASM provides the undocumented
CMPXCHG486rm to generate the non-standard opcode.

CMPXCHEompares its destination (first) operand to the valu&lipAX or EAX(depending on

the operand size of the instruction). If they are equal, it copies its source (second) operand into
the destination and sets the zero flag. Otherwise, it clears the zero flag and copies the destination
register to AL, AX or EAX.

The destination can be either a register or a memory location. The source is a register.

CMPXCHGs intended to be used for atomic operations in multitasking or multiprocessor
environments. To safely update a value in shared memory, for example, you might load
the value intoEAX load the updated value intBBX and then execute the instruction
LOCK CMPXCHG [value],EBX.If value hasnotchanged since beingloaded, itis updated
with your desired new value, and the zero flag is set to let you know it has workedL 0@k

prefix prevents another processor doing anything in the middle of this operation: it guarantees
atomicity.) However, if another processor has modified the value in between your load and your
attempted store, the store does not happen, and you are notified of the failure by a cleared zero
flag, so you can go round and try again.

43

A.5.31

A.5.32

A.5.33

CMPXCHG8ECompare and Exchange Eight Bytes
CMPXCHGS8B mem ;OFC7/1 [PENT]

This is a larger and more unwieldy version@MPXCHGt compares the 64-bit (eight-byte)
value stored aimem] with the value iInEDX:EAX If they are equal, it sets the zero flag and
storesECX:EBXinto the memory area. If they are unequal, it clears the zero flag and stores the
memory contents int&DX:EAX

CMPXCHGS8Ban be used with theOCKprefix, to allow atomic execution. This is useful in
multi-processor and multi-tasking environments.

COMISD Scalar Ordered Double-Precision FP Compare and Set
EFLAGS

COMISD xmm1,xmm2/mem64 ; 66 OF 2F /r [WILLAMETTE,SSEZ?]

COMISDcompares the low-order double-precision FP value in the two source operands. ZF,
PF and CF are set according to the result. OF, AF and AF are cleared. The unordered result is
returned if either source is a NaN (QNaN or SNaN).

The destination operand is 2MMegister. The source can be eitheXdaiMegister or amemory
location.

The flags are set according to the following rules:
Result Flags Values

UNORDERED: ZF,PF,CF <-- 111,
GREATER_THAN: ZF,PF,CF <-- 000;
LESS THAN: ZF,PF,CF <-- 001,
EQUAL: ZF,PF,CF <-- 100;

COMISS Scalar Ordered Single-Precision FP Compare and Set
EFLAGS

COMISS xmm1,xmm2/mem32 ; 66 OF 2F /r [KATMAI,SSE]

COMISScompares the low-order single-precision FP value in the two source operands. ZF,
PF and CF are set according to the result. OF, AF and AF are cleared. The unordered result is
returned if either source is a NaN (QNaN or SNaN).

The destination operand is 2iMMegister. The source can be eitheXaviMegister or amemory
location.

The flags are set according to the following rules:
Result Flags Values

UNORDERED: ZF,PF,CF <-- 111,
GREATER_THAN: ZF,PF,CF <-- 000;
LESS_THAN: ZF,PF,CF <-- 001,
EQUAL: ZF,PF,CF <-- 100;

44

A.5.34

A.5.35

A.5.36

CPUID: Get CPU ldentification Code
CPUID - OF A2 [PENT]

CPUID returns various information about the processor it is being executed on. It fills the
four register€AX EBX ECXandEDXwith information, which varies depending on the input
contents oEAX

CPUIDalso acts as a barrier to serialize instruction execution: executirigRbeD instruction
guarantees that all the effects (memory modification, flag modification, register modification)
of previous instructions have been completed before the next instruction gets fetched.

The information returned is as follows:

* If EAXis zero on inputEAXon output holds the maximum acceptable input value of
EAX andEBX:EDX:ECX contain the stringGenuinelntel ’ (or not, if you have a
clone processor). That is to s&BXcontains Genu’ (in NASM's own sense of character
constants)EDXcontains inel ' and ECXcontains htel ’

» If EAXis one oninputAXon output contains version information about the processor, and
EDXcontains a set of feature flags, showing the presence and absence of various features.
For example, bit 8 is set if th€MPXCHG8Bstruction (section A.5.31) is supported,
bit 15 is set if the conditional move instructions (section A.5.23 and section A.5.72) are
supported, and bit 23 is setMMXnstructions are supported.

* If EAXis two on inputEAX EBX ECXandEDXall contain information about caches and
TLBs (Translation Lookahead Buffers).

For more information on the data returned fr@RUID, see the documentation from Intel and
other processor manufacturers.

CVTDQ2PD Packed Signed INT32 to Packed Double-Precision FP
Conversion

CVTDQ2PD xmml,xmm2/mem64 ;F30FE6/r [WILLAMETTE,SSEZ2]

CVTDQZ2PL[zonverts two packed signed doublewords from the source operand to two packed
double-precision FP values in the destination operand.

The destination operand is aMMMegister. The source can be either@Megister or a 64-
bit memory location. If the source is a register, the packed integers are in the low quadword.

CVTDQ2PS Packed Signed INT32 to Packed Single-Precision FP
Conversion

CVTDQ2PS xmm1,xmm2/mem128 ; OF 5B /r [WILLAMETTE,SSEZ2]

CVTDQ2P<&onverts four packed signed doublewords from the source operand to four packed
single-precision FP values in the destination operand.

The destination operand is XiMMegister. The source can be eithenédviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

45

A.5.37

A.5.38

A.5.39

A.5.40

CVTPD2DQ Packed Double-Precision FP to Packed Signed INT32
Conversion

CVTPD2DQ xmml,xmm2/mem128 ;F20FE6/r [WILLAMETTE,SSEZ2]

CVTPD2Donverts two packed double-precision FP values from the source operand to two
packed signed doublewords in the low quadword of the destination operand. The high quadword
of the destination is set to all Os.

The destination operand is 2MMegister. The source can be eithenéviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTPD2PI: Packed Double-Precision FP to Packed Signed INT32
Conversion

CVTPD2PI mm,xmm/mem128 ;66 OF 2D /r [WILLAMETTE,SSEZ?]

CVTPD2PI converts two packed double-precision FP values from the source operand to two
packed signed doublewords in the destination operand.

The destination operand is diMXegister. The source can be eithenéviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTPD2PS Packed Double-Precision FP to Packed Single-Precision
FP Conversion

CVTPD2PS xmm1,xmm2/mem128 ;66 OF 5A/r [WILLAMETTE,SSEZ2]

CVTPD2P<onverts two packed double-precision FP values from the source operand to two
packed single-precision FP values in the low quadword of the destination operand. The high
guadword of the destination is set to all Os.

The destination operand is 2MMegister. The source can be eithenéviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTPI2PD: Packed Signed INT32 to Packed Double-Precision FP
Conversion

CVTPI2PD xmm,mm/mem64 ; 66 OF 2A /r [WILLAMETTE,SSEZ2]

CVTPI2PD converts two packed signed doublewords from the source operand to two packed
double-precision FP values in the destination operand.

The destination operand is aMMegister. The source can be eitherNMNMXegister or a 64-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

46

A.5.41

A.5.42

A.5.43

A.5.44

A.5.45

CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
CVTPI2PS xmm,mm/mem64 ; OF 2A /r [KATMAI,SSE]

CVTPI2PS converts two packed signed doublewords from the source operand to two packed
single-precision FP values in the low quadword of the destination operand. The high quadword
of the destination remains unchanged.

The destination operand is &MMegister. The source can be eitherMNIXegister or a 64-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTPS2DQ Packed Single-Precision FP to Packed Signed INT32
Conversion

CVTPS2DQ xmml,xmm2/mem128 ;66 OF5B/r [WILLAMETTE,SSEZ2]

CVTPS2DQonverts four packed single-precision FP values from the source operand to four
packed signed doublewords in the destination operand.

The destination operand is 2iMMegister. The source can be eithenéviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTPS2PD Packed Single-Precision FP to Packed Double-Precision
FP Conversion

CVTPS2PD xmml,xmm2/mem64 ; OF 5A /r [WILLAMETTE,SSEZ?]

CVTPS2PDconverts two packed single-precision FP values from the source operand to two
packed double-precision FP values in the destination operand.

The destination operand is &MMegister. The source can be eitheré@viMegister or a 64-
bit memory location. If the source is a register, the input values are in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

CVTPS2PI: Packed Single-Precision FP to Packed Signed INT32
Conversion

CVTPS2PI mm,xmm/mem64 ;OF 2D /Ir [KATMAI,SSE]

CVTPS2PI converts two packed single-precision FP values from the source operand to two
packed signed doublewords in the destination operand.

The destination operand is &M Xegister. The source can be eitheré@viMegister or a 64-
bit memory location. If the source is a register, the input values are in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

CVTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion
CVTSD2SI reg32,xmm/mem64 ; F20F 2D /r [WILLAMETTE,SSEZ2]

47

A.5.46

A.5.47

A.5.48

A.5.49

CVTSD2SI converts a double-precision FP value from the source operand to a signed
doubleword in the destination operand.

The destination operand is a general purpose register. The source can be exthitagister
or a 64-bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

CVTSD2SSScalar Double-Precision FP to Scalar Single-Precision FP
Conversion

CVTSD2SS xmml,xmm2/mem64 ; F20F 5A/r [KATMAI,SSE]

CVTSD2S<&onverts a double-precision FP value from the source operand to a single-precision
FP value in the low doubleword of the destination operand. The upper 3 doublewords are left
unchanged.

The destination operand is &MMegister. The source can be eitheré@viMegister or a 64-
bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

CVTSI2SD: Signed INT32 to Scalar Double-Precision FP Conversion
CVTSI2SD xmm,r/m32 :F20F 2A /r [WILLAMETTE,SSEZ2]

CVTSI2SD converts a signed doubleword from the source operand to a double-precision FP
value in the low quadword of the destination operand. The high quadword is left unchanged.

The destination operand is ZiMMegister. The source can be either a general purpose register
or a 32-bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTSI2SS: Signed INT32 to Scalar Single-Precision FP Conversion
CVTSI2SS xmm,r/m32 ; F30F 2A/r [KATMAI,SSE]

CVTSI2SS converts a signed doubleword from the source operand to a single-precision FP
value in the low doubleword of the destination operand. The upper 3 doublewords are left
unchanged.

The destination operand is XtMMegister. The source can be either a general purpose register
or a 32-bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTSS2SDScalar Single-Precision FP to Scalar Double-Precision FP
Conversion

CVTSS2SD xmml,xmm2/mem32 ; F30F5A/r [WILLAMETTE,SSEZ?]

CVTSS2Sxonverts a single-precision FP value from the source operand to a double-precision
FP value in the low quadword of the destination operand. The upper quadword is left unchanged.

48

A.5.50

A.5.51

A.5.52

A.5.53

The destination operand is 2iMMegister. The source can be eithepdiMegister or a 32-bit
memory location. If the source is a register, the input value is contained in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

CVTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion
CVTSS2SI reg32,xmm/mem32 ;F30F2D/r [KATMAI,SSE]

CVTSS2SI converts a single-precision FP value from the source operand to a signed
doubleword in the destination operand.

The destination operand is a general purpose register. The source can be exthiMagister
or a 32-bit memory location. If the source is a register, the input value is in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

CVTTPD2DQPacked Double-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPD2DQ xmm1,xmm2/mem128 ;66 OF E6/r [WILLAMETTE,SSEZ2?]

CVTTPD2DQonverts two packed double-precision FP values in the source operand to two
packed single-precision FP values in the destination operand. If the result is inexact, it is
truncated (rounded toward zero). The high quadword is set to all Os.

The destination operand is 2MMegister. The source can be eithenéviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTTPD2PI. Packed Double-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPD2PI mm,xmm/mem128 ;66 OF 2C /r [WILLAMETTE,SSEZ?]

CVTTPD2PI converts two packed double-precision FP values in the source operand to two
packed single-precision FP values in the destination operand. If the result is inexact, it is
truncated (rounded toward zero).

The destination operand is dMiMXegister. The source can be eithenéviMegister or a 128-
bit memory location.

For more details of this instruction, see the Intel Processor manuals.

CVTTPS2DQ Packed Single-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPS2DQ xmml1,xmm2/mem128 ;F30F5B/r [WILLAMETTE,SSEZ2]

CVTTPS2DQonverts four packed single-precision FP values in the source operand to four
packed signed doublewords in the destination operand. If the result is inexact, it is truncated
(rounded toward zero).

The destination operand is 2MMegister. The source can be eithenéviMegister or a 128-
bit memory location.

49

A.5.54

A.5.55

A.5.56

A.5.57

For more details of this instruction, see the Intel Processor manuals.

CVTTPS2PI: Packed Single-Precision FP to Packed Signed INT32
Conversion with Truncation

CVTTPS2PI mm,xmm/mem64 ; OF 2C Ir [KATMAI,SSE]

CVTTPS2PI converts two packed single-precision FP values in the source operand to two
packed signed doublewords in the destination operand. If the result is inexact, it is truncated
(rounded toward zero). If the source is a register, the input values are in the low quadword.

The destination operand is MiMXegister. The source can be either@Megister or a 64-
bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

CVTTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion
with Truncation

CVTTSD2SI reg32,xmm/mem64 ; F20F 2C/r [WILLAMETTE,SSEZ?]

CVTTSD2SIconverts adouble-precision FP value in the source operand to a signed doubleword
in the destination operand. If the result is inexact, it is truncated (rounded toward zero).

The destination operand is a general purpose register. The source can be exhitagister
or a 64-bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

CVTTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion
with Truncation

CVTTSD2SI reg32,xmm/mem32 ; F30F 2C/r [KATMAI,SSE]

CVTTSS2SI converts a single-precision FP value in the source operand to a signed doubleword
in the destination operand. If the result is inexact, it is truncated (rounded toward zero).

The destination operand is a general purpose register. The source can be exhiagister
or a 32-bit memory location. If the source is a register, the input value is in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

DAA DAS Decimal Adjustments

DAA .27 [8086]
DAS - 2F [8086]

These instructions are used in conjunction with the add and subtract instructions to perform
binary-coded decimal arithmetic packed/one BCD digit per nibble) form. For the unpacked
equivalents, see section A.5.1.

DAAshould be used after a one-byA®Dinstruction whose destination was tAé register:
by means of examining the value in tA& and also the auxiliary carry fla§yF, it determines
whether either digit of the addition has overflowed, and adjusts it (and sets the carry and

50

auxiliary-carry flags) if so. You can add long BCD strings together by daiDgDAAoN the
low two digits, then doindADG@DAAoN each subsequent pair of digits.

DASworks similarly toDAA but is for use afteBUBinstructions rather thaADD
A.5.58 DEC Decrement Integer

DEC regl6 ; 016 48+r [8086]
DEC reg32 ; 032 48+r [386]
DEC r/m8 ; FE /1 [8086]
DEC r/m16 ; 016 FF /1 [8086]
DEC r/m32 ; 032 FF /1 [386]

DECsubtracts 1 from its operand. It doest affect the carry flag: to affect the carry flag, use
SUB something,1 (see section A.5.305PECaffects all the other flags according to the
result.

This instruction can be used withL® CKprefix to allow atomic execution.

See alsdNC (section A.5.120).
A.5.59 DIV: Unsigned Integer Divide

DIV r/m8 ; F6 /6 [8086]
DIV r/m16 ; 016 F7 /6 [8086]
DIV r/m32 ; 032 F7 /6 [386]

DIV performs unsigned integer division. The explicit operand provided is the divisor; the
dividend and destination operands are implicit, in the following way:

 ForDIV r/m8 , AXis divided by the given operand; the quotient is storedlirand the
remainder inAH

* ForDIV r/m16 ,DX:AXis divided by the given operand; the quotient is storeéXand
the remainder ibX

* ForDIV r/m32 ,EDX:EAXis divided by the given operand; the quotient is storelAX
and the remainder iEDX

Signed integer division is performed by tH2lV instruction: see section A.5.117.

A.5.60 DIVPD: Packed Double-Precision FP Divide
DIVPD xmm1,xmm2/mem128 ;66 OF 5E /r [WILLAMETTE,SSE2]

DIVPD divides the two packed double-precision FP values in the destination operand by the
two packed double-precision FP values in the source operand, and stores the packed double-
precision results in the destination register.

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

dst[0-63] :=dst[0-63] / src[0-63],
dst[64-127] := dst[64-127] / src[64-127].

51

A.5.61

A.5.62

A.5.63

A.5.64

A.5.65

DIVPS: Packed Single-Precision FP Divide
DIVPS xmm1,xmm2/mem128 ; OF 5E /r [KATMAI,SSE]

DIVPS divides the four packed single-precision FP values in the destination operand by the four
packed single-precision FP values in the source operand, and stores the packed single-precision
results in the destination register.

The destination is akMMegister. The source operand can be eithexihegister or a 128-
bit memory location.

dst[0-31] :=dst[0-31] /src[0-31],
dst[32-63] := dst[32-63] / src[32-63],
dst[64-95] := dst[64-95] / src[64-95],
dst[96-127] := dst[96-127] / src[96-127].

DIVSD: Scalar Double-Precision FP Divide
DIVSD xmm1,xmm2/mem64 :F20F5E /r [WILLAMETTE,SSEZ?]

DIVSD divides the low-order double-precision FP value in the destination operand by the low-
order double-precision FP value in the source operand, and stores the double-precision resultin
the destination register.

The destination is akMMegister. The source operand can be eitheX@iMegister or a 64-
bit memory location.

dst[0-63] := dst[0-63] / src[0-63],
dst[64-127] remains unchanged.

DIVSS: Scalar Single-Precision FP Divide
DIVSS xmm1,xmm2/mem32 F3OF5E /r [KATMAI,SSE]

DIVSS divides the low-order single-precision FP value in the destination operand by the low-
order single-precision FP value in the source operand, and stores the single-precision result in
the destination register.

The destination is akMMegister. The source operand can be eitheXiiMegister or a 32-
bit memory location.

dst[0-31] :=dst[0-31]/ src[0-31],
dst[32-127] remains unchanged.

EMMSEmpty MMX State
EMMS ; OF 77 [PENT,MMX]

EMMSets the FPU tag word (marking which floating-point registers are available) to all ones,
meaning all registers are available for the FPU to use. It should be used after exédhtig
instructions and before executing any subsequent floating-point operations.

ENTER Create Stack Frame
ENTER imm16,imm8 ; C8iw ib [186]

52

A.5.66

A.5.67

A.5.68

ENTERconstructs a stack frame for a high-level language procedure call. The first operand (the
iw in the opcode definition above refers to the first operand) gives the amount of stack space to
allocate for local variables; the second (the above) gives the nesting level of the procedure
(for languages like Pascal, with nested procedures).

The function ofENTER with a nesting level of zero, is equivalent to

PUSH EBP ; or PUSH BP in 16 bits
MOV EBP, ESP ; or MOV BP, SP in 16 bits
LEA ESP, [ESP - opl]; or LEA SP, [BP - opl] in 16 bits

This creates a stack frame with the procedure parameters accessible upwar&sfoamd
local variables accessible downwards fr&BP. Note that the flags are not modified by the
calculation.

With a nesting level of one, the stack frame created is 4 (or 2) bytes bigger, and the value of the
final frame pointeEBPIs accessible in memory EEBP-4] .

This allowsENTERwhen called with a nesting level of two, to look at the stack frame described
by the previousvalue of EBP, find the frame pointer at offset -4 from that, and push it along
with its new frame pointer, so that when a level-two procedure is called from within a level-one
procedure[EBP-4] holds the frame pointer of the most recent level-one procedure call and
[EBP-8] holds that of the most recent level-two call. And so on, for nesting levels up to 31.
The nesting level is determined by bitwise AND-masking the second operand with 31.

Stack frames created BNTERcan be destroyed by tihé& AVEinstruction: see section A.5.136.
F2XM1 Calculate 2**X-1
F2XM1 ; D9 FO [8086,FPU]

F2XMZlraises 2 to the power @TO, subtracts one, and stores the result back 8%6. The
initial contents ofSTO must be a number in the range -1.0 to +1.0.

FABS Floating-Point Absolute Value
FABS ;D9 E1 [8086,FPU]

FABScomputes the absolute value®T0,by clearing the sign bit, and stores the result back in
STO.

FADD FADDP Floating-Point Addition

FADD mem32 ; D8 /0 [8086,FPU]
FADD mem64 ; DC /0 [8086,FPU]
FADD fpureg ; D8 CO+r [8086,FPU]
FADD STO,fpureg ; D8 CO+r [8086,FPU]
FADD TO fpureg ; DC CO+r [8086,FPU]
FADD fpureg,STO ; DC CO+r [8086,FPU]
FADDP fpureg ; DE CO+r [8086,FPU]
FADDP fpureg,STO ; DE CO+r [8086,FPU]

53

* FADD given one operand, adds the operan®&1® and stores the result back 8T0. If
the operand has tié@Omaodifier, the result is stored in the register given rather th&Ti

» FADDPperforms the same function B8ADD TQbut pops the register stack after storing
the result.

The given two-operand forms are synonyms for the one-operand forms.

To add an integer value ®TO0, use the=IADD instruction (section A.5.80).

A.5.69 FBLD, FBSTP. BCD Floating-Point Load and Store

FBLD mem80 ; DF /4 [8086,FPU]
FBSTP mem80 ; DF /6 [8086,FPU]

FBLDloads an 80-bit (ten-byte) packed binary-coded decimal number from the given memory
address, converts it to a real, and pushes it on the register BBSH.Pstores the value &TO0,
in packed BCD, at the given address and then pops the register stack.

A.5.70 FCHS Floating-Point Change Sign
FCHS ; D9 EO [8086,FPU]

FCHSnegates the number 8IT0, by inverting the sign bit: negative numbers become positive,
and vice versa.

A.5.71 FCLEX FNCLEX Clear Floating-Point Exceptions

FCLEX ; 9B DB E2 [8086,FPU]
FNCLEX ; DB E2 [8086,FPU]

FCLEXclears any floating-point exceptions which may be penditCLEXdoes the same
thing but doesn't wait for previous floating-point operations (includindhtredlingof pending
exceptions) to finish first.

A.5.72 FCMOVcc Floating-Point Conditional Move

FCMOVB fpureg ; DA CO+r [P6,FPU]
FCMOVB STO,fpureg ; DA CO+r [P6,FPU]
FCMOVE fpureg ; DA C8+r [P6,FPU]
FCMOVE STO,fpureg ; DA C8+r [P6,FPU]
FCMOVBE fpureg ; DA DO+r [P6,FPU]
FCMOVBE STO,fpureg ; DA DO+r [P6,FPU]
FCMOVU fpureg ; DA D8+r [P6,FPU]
FCMOVU STO,fpureg ; DA D8+r [P6,FPU]
FCMOVNB fpureg : DB CO+r [P6,FPU]
FCMOVNB STO,fpureg ; DB CO+r [P6,FPU]
FCMOVNE fpureg ; DB C8+r [P6,FPU]
FCMOVNE STO,fpureg : DB C8+r [P6,FPU]

54

A.5.73

FCMOVNBE fpureg . DB DO+r [P6,FPU]

FCMOVNBE STO,fpureg : DB DO+r [P6,FPU]
FCMOVNU fpureg ; DB D8+r [P6,FPU]
FCMOVNU STO,fpureg ; DB D8+r [P6,FPU]

The U instructions perform conditional move operations: each of them moves the contents of
the given register int&TO if its condition is satisfied, and does nothing if not.

The conditions are not the same as the standard condition codes used with conditional jump
instructions. The conditionB, BE, NB, NBE E andNEare exactly as normal, but none of the
other standard ones are supported. Instead, the condiiod its counterpafiUare provided;

theU condition is satisfied if the last two floating-point numbers compared wesederedi.e.

they were not equal but neither one could be said to be greater than the other, for example if they
were NaNs. (The flag state which signals this is the setting of the parity flag: sbcthredition

is notionally equivalent t&E, andNUis equivalent td?Q)

The FCMO\¢onditions test the main processor's status flags, not the FPU status flags, so using
FCMOMirectly afterFCOMuvill not work. Instead, you should either us€OMIwhich writes
directly to the main CPU flags word, or uB&TSWo extract the FPU flags.

Although theFCMOMnstructions are flaggeB6 above, they may not be supported by all
Pentium Pro processors; t6®UIDinstruction (section A.5.34) will return a bit which indicates
whether conditional moves are supported.

FCOMFCOMPFCOMPPFCOM| FCOMIR Floating-Point Compare

FCOM mem32 ; D8 /2 [8086,FPU]
FCOM mem64 ; DC /2 [8086,FPU]
FCOM fpureg ; D8 DO+r [8086,FPU]
FCOM STO,fpureg ; D8 DO+r [8086,FPU]
FCOMP mem32 ;D8 /3 [8086,FPU]
FCOMP mem64 ; DC /3 [8086,FPU]
FCOMP fpureg ; D8 D8+r [8086,FPU]
FCOMP STO,fpureg : D8 D8+r [8086,FPU]
FCOMPP ; DE D9 [8086,FPU]
FCOMI fpureg ; DB FO+r [P6,FPU]
FCOMI STO,fpureg ; DB FO+r [P6,FPU]
FCOMIP fpureg ; DF FO+r [P6,FPU]
FCOMIP STO,fpureg ; DF FO+r [P6,FPU]

FCOMompare$STO with the given operand, and sets the FPU flags accordi8di.is treated
as the left-hand side of the comparison, so that the carry flag is set (for a ‘less-than’ result) if
STO s less than the given operand.

FCOMPRIoes the same &COMbut pops the register stack afterwafd€OMPRomparesSTO
with ST1 and then pops the register stack twice.

FCOMIlandFCOMIPwork like the corresponding forms 6iCOMandFCOMPbut write their
results directly to the CPU flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move instructions.

55

A.5.74

A.5.75

A.5.76

A5.77

The FCOMnstructions differ from thd&=UCONMnNstructions (section A.5.108) only in the way
they handle quiet NaN&UCONMuvill handle them silently and set the condition code flags to an
‘unordered’ result, wheredSCOMill generate an exception.

FCOS Cosine
FCOS . D9 FF [386,FPU]

FCOScomputes the cosine &TO (in radians), and stores the resul8m0. The absolute value
of STO must be less than 2**63.

See alsd-SINCOS(section A.5.100).
FDECSTP Decrement Floating-Point Stack Pointer
FDECSTP ; D9 F6 [8086,FPU]

FDECSTPdecrements the ‘top’ field in the floating-point status word. This has the effect of
rotating the FPU register stack by one, as if the conten&Igthad been pushed on the stack.
See alsd-INCSTP (section A.5.85).

FxDISI , FXENI : Disable and Enable Floating-Point Interrupts

FDISI : 9B DB E1 [8086,FPU]
FNDISI . DB E1 [8086,FPU]
FENI : 9B DB EO [8086,FPU]
FNENI : DB EO [8086,FPU]

FDISI and FENI disable and enable floating-point interrupts. These instructions are only
meaningful on original 8087 processors: the 287 and above treat them as no-operation
instructions.

FNDISI andFNENI do the same thing &DISI andFENI respectively, but without waiting
for the floating-point processor to finish what it was doing first.

FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division

FDIV mem32 ; D8 /6 [8086,FPU]
FDIV mem64 ; DC /6 [8086,FPU]
FDIV fpureg ; D8 FO+r [8086,FPU]
FDIV STO,fpureg ; D8 FO+r [8086,FPU]
FDIV TO fpureg : DC F8+r [8086,FPU]
FDIV fpureg,STO ; DC F8+r [8086,FPU]
FDIVR mem32 ; D8 17 [8086,FPU]
FDIVR mem64 ; DC /7 [8086,FPU]
FDIVR fpureg ; D8 F8+r [8086,FPU]
FDIVR STO,fpureg ; D8 F8+r [8086,FPU]
FDIVR TO fpureg ; DC FO+r [8086,FPU]
FDIVR fpureg,STO ; DC FO+r [8086,FPU]

56

A.5.78

A.5.79

A.5.80

A.5.81

FDIVP fpureg ; DE F8+r [8086,FPU]

FDIVP fpureg,STO : DE F8+r [8086,FPU]
FDIVRP fpureg ; DE FO+r [8086,FPU]
FDIVRP fpureg,STO ; DE FO+r [8086,FPU]

* FDIV dividesSTO by the given operand and stores the result bacif, unless tha' O
gualifier is given, in which case it divides the given operandhy and stores the result
in the operand.

* FDIVR does the same thing, but does the division the other way up:1$0ig not given,
it divides the given operand I§TO0 and stores the result BTO, whereas ifTOis given it
dividesSTO by its operand and stores the result in the operand.

* FDIVP operates likd-DIV TO, but pops the register stack once it has finished.
* FDIVRP operates likd=DIVR TQ, but pops the register stack once it has finished.
For FP/Integer divisions, sédDIV (section A.5.82).

FEMMSFaster Enter/Exit of the MMX or floating-point state
FEMMS ; OF OE [PENT,3DNOW]

FEMMS&an be used in place of tiEEMMS$nstruction on processors which support the 3DNow!
instruction set. Following execution BEMMSthe state of th&MX/FPregisters is undefined,
and this allows a faster context switch betw&®&andMMXnstructions. ThEEMM$struction
can also be usdokeforeexecutingMMXnstructions.

FFREE Flag Floating-Point Register as Unused

FFREE fpureg ; DD CO+r [8086,FPU]
FFREEP fpureg ; DF CO+r [286,FPU,UNDOC]

FFREEmarks the given register as being empty.
FFREEPmarks the given register as being empty, and then pops the register stack.
FIADD: Floating-Point/Integer Addition

FIADD mem16 ' DE /0 [8086,FPU]
FIADD mem32 DA /0 [8086,FPU]

FIADD adds the 16-bit or 32-bit integer stored in the given memory locati@iT@ storing
the result inSTO.

FICOM FICOMP Floating-Point/Integer Compare

FICOM mem16 ; DE /2 [8086,FPU]
FICOM mem32 ; DA /2 [8086,FPU]
FICOMP mem16 ; DE /3 [8086,FPU]
FICOMP mem32 ; DA /3 [8086,FPU]

FICOMcompare$STO with the 16-bit or 32-bit integer stored in the given memory location, and
sets the FPU flags accordinghlCOMPdoes the same, but pops the register stack afterwards.

57

A.5.82

A.5.83

A.5.84

A.5.85

A.5.86

FIDIV , FIDIVR : Floating-Point/Integer Division

FIDIV mem16 . DE /6 [8086,FPU]
FIDIV mem32 . DA /6 [8086,FPU]
FIDIVR mem16 : DE /7 [8086,FPU]
FIDIVR mem32 ' DA [7 [8086,FPU]

FIDIV dividesSTO by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result iSTO. FIDIVR does the division the other way up: it divides the integer by
STO, but still stores the result iBTO.

FILD , FIST , FISTP : Floating-Point/Integer Conversion

FILD mem16 ; DF /0 [8086,FPU]
FILD mem32 ; DB /0 [8086,FPU]
FILD mem64 ; DF /5 [8086,FPU]
FIST mem16 ; DF /2 [8086,FPU]
FIST mem32 ; DB /2 [8086,FPU]
FISTP mem16 ; DF /3 [8086,FPU]
FISTP mem32 ; DB /3 [8086,FPU]
FISTP mem64 ; DF /7 [8086,FPU]

FILD loads an integer out of a memory location, converts it to a real, and pushes it on the FPU
register stackFIST convertsSTO to an integer and stores that in memd®ySTP does the
same a$IST , but pops the register stack afterwards.

FIMUL: Floating-Point/Integer Multiplication

FIMUL mem16 ; DE/1 [8086,FPU]
FIMUL mem32 ; DA /1 [8086,FPU]

FIMUL multipliesSTO by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result i TO.

FINCSTP: Increment Floating-Point Stack Pointer
FINCSTP ; D9 F7 [8086,FPU]

FINCSTP increments the ‘top’ field in the floating-point status word. This has the effect of
rotating the FPU register stack by one, as if the register stack had been popped; however, unlike
the popping of the stack performed by many FPU instructions, it does not flag th& Tiew
(previouslySTO0) as empty. See ald6DECSTRsection A.5.75).

FINIT , FNINIT : initialize Floating-Point Unit

FINIT : 9B DB E3 [8086,FPU]
FNINIT - DB E3 [8086,FPU]

FINIT initializes the FPU to its default state. It flags all registers as empty, without actually
change their values, clears the top of stack poiRfefNIT does the same, without first waiting
for pending exceptions to clear.

58

A.5.87

A.5.88

A.5.89

A.5.90

FISUB: Floating-Point/Integer Subtraction

FISUB mem16 ; DE /4 [8086,FPU]
FISUB mem32 ; DA /4 [8086,FPU]
FISUBR mem16 ; DE /5 [8086,FPU]
FISUBR mem32 ; DA /5 [8086,FPU]

FISUB subtracts the 16-bit or 32-bit integer stored in the given memory location 6@
and stores the result BTO. FISUBR does the subtraction the other way round, i.e. it subtracts
STO from the given integer, but still stores the resul&m0.

FLD: Floating-Point Load

FLD mem32 ; D9 /0 [8086,FPU]
FLD mem64 ; DD /0 [8086,FPU]
FLD mem80 ; DB /5 [8086,FPU]
FLD fpureg ; D9 CO+r [8086,FPU]

FLD loads a floating-point value out of the given register or memory location, and pushes it on
the FPU register stack.

FLDxx: Floating-Point Load Constants

FLD1 . D9 ES8 [8086,FPU]
FLDL2E : D9 EA [8086,FPU]
FLDL2T : D9 E9 [8086,FPU]
FLDLG2 : D9 EC [8086,FPU]
FLDLN2 : D9 ED [8086,FPU]
FLDPI . D9 EB [8086,FPU]
FLDZ . D9 EE [8086,FPU]

These instructions push specific standard constants on the FPU register stack.
Instruction Constant pushed

FLD1 1

FLDL2E base-2 logarithm of e
FLDL2T base-2 log of 10
FLDLG2 base-10 log of 2
FLDLNZ2 base-e log of 2
FLDPI pi

FLDZ zero

FLDCWLoad Floating-Point Control Word
FLDCW mem16 ; D9 /5 [8086,FPU]

FLDCWoads a 16-bit value out of memory and stores it into the FPU control word (governing
things like the rounding mode, the precision, and the exception masks). SESaISE\(section
A.5.103). If exceptions are enabled and you don't want to generate orfeCugeXor FNCLEX
(section A.5.71) before loading the new control word.

59

A.5.91 FLDENV Load Floating-Point Environment
FLDENV mem ; D9 /4 [8086,FPU]

FLDENMoads the FPU operating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) from memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See BSDENV(section A.5.104).

A.5.92 FMUL FMULP Floating-Point Multiply

FMUL mem32 ; D8 /1 [8086,FPU]
FMUL mem64 ; DC /1 [8086,FPU]
FMUL fpureg ; D8 C8+r [8086,FPU]
FMUL STO,fpureg ; D8 C8+r [8086,FPU]
FMUL TO fpureg ; DC C8+r [8086,FPU]
FMUL fpureg,STO ; DC C8+r [8086,FPU]
FMULP fpureg ; DE C8+r [8086,FPU]
FMULP fpureg,STO ; DE C8+r [8086,FPU]

FMULmultipliesSTO by the given operand, and stores the resuiTi®, unless thdOqualifier
is used in which case it stores the result in the operBNULPperforms the same operation as
FMUL TOQand then pops the register stack.

A.5.93 FNORP Floating-Point No Operation
FNOP ; D9 DO [8086,FPU]
FNOPdoes nothing.

A.5.94 FPATAN FPTAN Arctangent and Tangent

FPATAN . D9 F3 [8086,FPU]
FPTAN : D9 F2 [8086,FPU]

FPATANcomputes the arctangent, in radians, of the result of dividing by STO, stores the
resultinST1, and pops the register stack. It works like that@n2 function, in that changing
the sign of botlST0 andST1 changes the output value by pi (so it performs true rectangular-to-
polar coordinate conversion, wi8iT 1 being the Y coordinate arfiT0 being the X coordinate,

not merely an arctangent).

FPTANcomputes the tangent of the valueSi0 (in radians), and stores the result back into
STO.

The absolute value &TO must be less than 2**63.
A.5.95 FPREMFPREM1 Floating-Point Partial Remainder

FPREM : D9 F8 [8086,FPU]
FPREM1 . D9 F5 [386,FPU]

These instructions both produce the remainder obtained by dividii@ by ST1. This is
calculated, notionally, by dividin@TO by ST1, rounding the result to an integer, multiplying

60

by ST1 again, and computing the value which would need to be added back on to the result to
get back to the original value &TO.

The two instructions differ in the way the notional round-to-integer operation is performed.
FPREMloes it by rounding towards zero, so that the remainder it returns always has the same
sign as the original value BT0; FPREMdoes it by rounding to the nearest integer, so that the
remainder always has at most half the magnitud8 .

Both instructions calculatpartial remainders, meaning that they may not manage to provide
the final result, but might leave intermediate resultSTi® instead. If this happens, they will set

the C2 flag in the FPU status word; therefore, to calculate a remainder, you should repeatedly
executedcFPREMor FPREMuntil C2 becomes clear.

A.5.96 FRNDINT: Floating-Point Round to Integer
FRNDINT ' D9 FC [8086,FPU]

FRNDINTrounds the contents &TO0 to an integer, according to the current rounding mode set
in the FPU control word, and stores the result bacgTi0.

A.5.97 FSAVE FRSTORSave/Restore Floating-Point State

FSAVE mem ; 9B DD /6 [8086,FPU]
FNSAVE mem ;DD /6 [8086,FPU]
FRSTOR mem ;DD /4 [8086,FPU]

FSAVEsaves the entire floating-point unit state, including all the information savE&BEENV
(section A.5.104) plus the contents of all the registers, to a 94 or 108 byte area of memory
(depending on the CPU mod&RSTORestores the floating-point state from the same area of
memory.

FNSAVEdoes the same &SAVE without first waiting for pending floating-point exceptions
to clear.

A.5.98 FSCALE Scale Floating-Point Value by Power of Two
FSCALE ; D9 FD [8086,FPU]

FSCALEscales a number by a power of two: it rour8iE1 towards zero to obtain an integer,
then multipliesSTO by two to the power of that integer, and stores the resuitli.

A.5.99 FSETPM Set Protected Mode
FSETPM - DB E4 [286,FPU]

This instruction initializes protected mode on the 287 floating-point coprocessor. It is only
meaningful on that processor: the 387 and above treat the instruction as a no-operation.

A.5.100 FSIN, FSINCOS Sine and Cosine

FSIN . D9 FE [386,FPU]
FSINCOS ; D9 FB [386,FPU]

FSIN calculates the sine &TO (in radians) and stores the resultSi0. FSINCOSdoes the
same, but then pushes the cosine of the same value on the register stack, so that the sine ends up

61

A.5.101

A.5.102

A.5.103

A.5.104

A.5.105

in ST1 and the cosine iBTO. FSINCOSis faster than executingSIN andFCOS(see section
A.5.74) in succession.

The absolute value &TO must be less than 2**63.

FSQRT Floating-Point Square Root

FSQRT : D9 FA [8086,FPU]
FSQRTcalculates the square root 810 and stores the result BTO.
FST, FSTP. Floating-Point Store

FST mem32 ; D9 /2 [8086,FPU]
FST mem64 ; DD /2 [8086,FPU]
FST fpureg ; DD DO+r [8086,FPU]
FSTP mem32 ; D9 /3 [8086,FPU]
FSTP mem64 ; DD /3 [8086,FPU]
FSTP mem80 ; DB /7 [8086,FPU]
FSTP fpureg ; DD D8+r [8086,FPU]

FST stores the value iBTO into the given memory location or other FPU regiskS3.TP does
the same, but then pops the register stack.

FSTCWStore Floating-Point Control Word

FSTCW mem16 ; 9B D9 /7 [8086,FPU]
FNSTCW mem16 ; D9 [7 [8086,FPU]

FSTCWstores thé=PU control word (governing things like the rounding mode, the precision,
and the exception masks) into a 2-byte memory area. Se&hBBGWsection A.5.90).

FNSTCWHoes the same thing &STCW without first waiting for pending floating-point
exceptions to clear.

FSTENV Store Floating-Point Environment

FSTENV mem ; 9B D9 /6 [8086,FPU]
FNSTENV mem ;D9 /6 [8086,FPU]

FSTEN\Vstores thé&PUoperating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) into memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See BIIOENV/(section A.5.91).

FNSTENVdoes the same thing &STENYV without first waiting for pending floating-point
exceptions to clear.

FSTSW Store Floating-Point Status Word

FSTSW mem16 ;9B DD /7 [8086,FPU]
FSTSW AX : 9B DF EO [286,FPU]
FNSTSW mem16 . DD /7 [8086,FPU]
FNSTSW AX . DF EO [286,FPU]

62

FSTSWstores thé=PUstatus word intdAX or into a 2-byte memory area.

FNSTSWdoes the same thing &STSW without first waiting for pending floating-point
exceptions to clear.

A.5.106 FSUB FSUBR FSUBR FSUBRP Floating-Point Subtract

FSUB mem32 ; D8 /4 [8086,FPU]
FSUB mem64 ; DC /4 [8086,FPU]
FSUB fpureg ; D8 EO+r [8086,FPU]
FSUB STO,fpureg ; D8 EO+r [8086,FPU]
FSUB TO fpureg ; DC E8+r [8086,FPU]
FSUB fpureg,STO ; DC E8+r [8086,FPU]
FSUBR mem32 ;D8 /5 [8086,FPU]
FSUBR mem64 ;DC /5 [8086,FPU]
FSUBR fpureg ; D8 E8+r [8086,FPU]
FSUBR STO,fpureg ; D8 E8+r [8086,FPU]
FSUBR TO fpureg ; DC EO+r [8086,FPU]
FSUBR fpureg,STO ; DC EO+r [8086,FPU]
FSUBP fpureg ; DE E8+r [8086,FPU]
FSUBP fpureg,STO ; DE E8+r [8086,FPU]
FSUBRP fpureg ; DE EO+r [8086,FPU]
FSUBRP fpureg,STO ; DE EO+r [8086,FPU]

* FSUBsubtracts the given operand frdi 0 and stores the result back8T0, unless the
TOgqualifier is given, in which case it subtra&@30 from the given operand and stores the
result in the operand.

* FSUBRdoes the same thing, but does the subtraction the other way upT€isf not
given, it subtract§TO from the given operand and stores the resuTi®, whereas ifTO
is given it subtracts its operand fro8T0 and stores the result in the operand.

» FSUBPoperates likd=SUB TQbut pops the register stack once it has finished.

* FSUBRPoperates like=SUBR TObut pops the register stack once it has finished.
A.5.107 FTST: Test STO Against Zero

FTST ; D9 E4 [8086,FPU]

FTST comparesSTO with zero and sets the FPU flags accordin§yO0 is treated as the left-
hand side of the comparison, so that a ‘less-than’ result is geners&8@@ i negative.

A.5.108 FUCOMxxFloating-Point Unordered Compare

FUCOM fpureg ; DD EO+r [386,FPU]
FUCOM STO,fpureg ; DD EO+r [386,FPU]

63

A.5.109

A.5.110

FUCOMP fpureg ; DD E8+r [386,FPU]

FUCOMP STO,fpureg ; DD E8+r [386,FPU]
FUCOMPP ; DA E9 [386,FPU]
FUCOMI fpureg : DB E8+r [P6,FPU]
FUCOMI STO,fpureg : DB E8+r [P6,FPU]
FUCOMIP fpureg ; DF E8+r [P6,FPU]
FUCOMIP STO,fpureg ; DF E8+r [P6,FPU]

« FUCOMomparesSTO with the given operand, and sets the FPU flags accordiSgi).
is treated as the left-hand side of the comparison, so that the carry flag is set (for a ‘less-
than’ result) ifSTO is less than the given operand.

» FUCOMRIoes the same @&BsUCOMbut pops the register stack afterwaré&COMPP
comparesSTO with ST1 and then pops the register stack twice.

FUCOMIandFUCOMIPwork like the corresponding forms 6lUCOMNdFUCOMPout
write their results directly to the CPU flags register rather than the FPU status word, so
they can be immediately followed by conditional jump or conditional move instructions.

The FUCOMNstructions differ from th&=COMnstructions (section A.5.73) only in the way
they handle quiet NaN&UCOMvill handle them silently and set the condition code flags to an
‘unordered’ result, wheredSCOMwvill generate an exception.

FXAM Examine Class of Value in STO

FXAM ; D9 E5 [8086,FPU]

FXAMsets the FPU flag83, C2 andCO0 depending on the type of value storedSmO:
Register contents Flags

Unsupported format 000

NaN 001
Finite number 010
Infinity 011
Zero 100
Empty register 101
Denormal 110

Additionally, theC1 flag is set to the sign of the number.

FXCH Floating-Point Exchange

FXCH ; D9 C9 [8086,FPU]
FXCH fpureg ; D9 C8+r [8086,FPU]
FXCH fpureg,STO ; D9 C8+r [8086,FPU]
FXCH STO,fpureg ; D9 C8+r [8086,FPU]

FXCHexchanges$TO0 with a given FPU register. The no-operand form exchar&E3 with
ST1.

64

A.5.111

A.5.112

A.5.113

A.5.114

A.5.115

FXRSTORRestore FP, MMXand SSE State
FXRSTOR memory - OF AE /1 [P6,SSE,FPU]

The FXRSTORNstruction reloads thePU, MMXand SSE state (environment and registers),
from the 512 byte memory area defined by the source operand. This data should have been
written by a previou$XSAVE

FXSAVE Store FP, MMXand SSE State
FXSAVE memory ; OF AE /0 [P6,SSE,FPU]

The FXSAVEnstruction writes the currefPU, MM>XandSSEtechnology states (environment

and registers), to the 512 byte memory area defined by the destination operand. It does this
without checking for pending unmasked floating-point exceptions (similar to the operation of
FNSAVE.

Unlike the FSAVE/FNSAVEinstructions, the processor retains the contents oFtPld MMX
andSSkEstate in the processor after the state has been saved. This instruction has been optimized
to maximize floating-point save performance.

FXTRACT Extract Exponent and Significand
FXTRACT ; D9 F4 [8086,FPU]

FXTRACTseparates the number 8ir0 into its exponent and significand (mantissa), stores
the exponent back int8TO, and then pushes the significand on the register stack (so that the
significand ends up i8TO, and the exponent iST1).

FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)

FYL2X ; D9 F1 [8086,FPU]
FYL2XP1 ; D9 F9 [8086,FPU]

FYL2X multipliesST1 by the base-2 logarithm @&TO, stores the result i8T1, and pops the
register stack (so that the result ends ugir0). STO must be non-zero and positive.

FYL2XP1 works the same way, but replacing the base-2 10§ with that of STO plus one.
This time,STO must have magnitude no greater than 1 minus half the square root of two.

HLT: Halt Processor
HLT - F4 [8086,PRIV]

HLT puts the processor into a halted state, where it will perform no more operations until
restarted by an interrupt or a reset.

On the 286 and later processors, this is a privileged instruction.

This instruction, when supported, generally causes the CPU to idle, either by sleeping a certain
amount of time, releasing atime slice in a multitasker, or actually halting until the next hardware
interrupt occurs. Thus, executing HLT within an input loop after not receiving any new inputs
allows to idle the system.

DPMI environments may fault when trying to execute HLT, if the host does not support this
usage. Calls such as interrupt 2Fh with AX=1680h must be used instead then.

65

A.5.116

A.5.117

A.5.118

IBTS : Insert Bit String

IBTS r/m16,regl6 ; 016 OF A7 Ir [386,UNDOC]
IBTS r/m32,reg32 ; 032 OF A7 Ir [386,UNDOC]

The implied operation of this instruction is:

IBTS r/m16,AX,CL,reg16
IBTS r/m32,EAX,CL,reg32

Writes a bit string from the source operand to the destina@drindicates the number of bits
to be copied, from the low bits of the sour¢&)AX indicates the low order bit offset in the
destination that is written to. For exampleQt is set to 4 and\X (for 16-bit code) is setto 5,
bits 0-3 ofsrc will be copied to bits 5-8 ofist . This instruction is very poorly documented,
and | have been unable to find any official source of documentation on it.

IBTS is supported only on the early Intel 386s, and conflicts with the opcodEMEXCHG486
(on early Intel 486s). NASM supports it only for completeness. Its counterpXB1sS (see
section A.5.332).

IDIV : Signed Integer Divide

IDIV r/m8 “F6 /7 [8086]
IDIV r/m16 - 016 F7 /7 [8086]
IDIV r/m32 L 032 F7 /7 [386]

IDIV performs signed integer division. The explicit operand provided is the divisor; the
dividend and destination operands are implicit, in the following way:

* ForIDIV r/m8 , AXis divided by the given operand; the quotient is storedlirand the
remainder inAH

 ForIDIV r/m16 , DX:AX s divided by the given operand; the quotient is storedX
and the remainder iBX

 ForIDIV r/m32 , EDX:EAXis divided by the given operand; the quotient is stored in
EAXand the remainder iEDX

Unsigned integer division is performed by thé/ instruction: see section A.5.59.

IMUL: Signed Integer Multiply

IMUL r/m8 ; F6 /5 [8086]

IMUL r/m16 ;016 F7 /5 [8086]
IMUL r/m32 ;032 F7 /5 [386]
IMUL reg16,r/m16 ; 016 OF AF /r [386]
IMUL reg32,r/m32 ; 032 OF AF /r [386]
IMUL reg16,imm8 ;016 6B /rib [186]
IMUL reg16,imm16 ; 016 69 /r iw [186]
IMUL reg32,imm8 ;032 6B /rib [386]
IMUL reg32,imm32 ; 032 69 /rid [386]
IMUL reg16,r/m16,imm8 ; 016 6B /r ib [186]

66

A.5.119

A.5.120

IMUL reg16,r/m16,imm16 ; 016 69 /r iw [186]
IMUL reg32,r/m32,imm8 ; 032 6B /rib [386]
IMUL reg32,r/m32,imm32 ;03269 /rid [386]

IMUL performs signed integer multiplication. For the single-operand form, the other operand
and destination are implicit, in the following way:

 ForIMUL r/m8 , AL is multiplied by the given operand; the product is storeAXa
* ForIMUL r/m16 , AXis multiplied by the given operand; the product is store@X1AX.

* For IMUL r/m32 , EAXis multiplied by the given operand; the product is stored in
EDX:EAX

The two-operand form multiplies its two operands and stores the result in the destination (first)
operand. The three-operand form multiplies its last two operands and stores the resultin the first
operand.

The two-operand form with an immediate second operand is in fact a shorthand for the three-
operand form, as can be seen by examining the opcode descriptions: in the two-operand form,
the coder takes both its register amin parts from the same operand (the first one).

In the forms with an 8-bitimmediate operand and another longer source operand, the immediate
operand is considered to be signed, and is sign-extended to the length of the other source
operand. Th&YTEqualifier can be used to force NASM to generate this form of the instruction.
Recent versions of NASM automatically optimise to this form if the immediate operand's value
is known during the assembling of that instruction, and fits in the range of a signed byte. The
longer variant can then still be forced using 8iIERICT WORDr STRICT DWORARBualifier.

Unsigned integer multiplication is performed by thi&JLinstruction: see section A.5.184.

IN : Input from 1/O Port

IN AL,imm8 ;E4ib [8086]
IN AX,imm8 ;016 E5 ib [8086]
IN EAX,imm8 ;032 E5ib [386]
IN AL,DX EC [8086]

IN AX,DX : 016 ED [8086]
IN EAX,DX ; 032 ED [386]

IN reads a byte, word or doubleword from the specified 1/0O port, and stores it in the given
destination register. The port number may be specified as an immediate value if it is between O
and 255, and otherwise must be store®X See als®UT(section A.5.194).

INC: Increment Integer

INC regl6 ; 016 40+r [8086]
INC reg32 ; 032 40+r [386]
INC r/m8 ; FE /0 [8086]
INC r/m16 ; 016 FF /0 [8086]
INC r/m32 ; 032 FF /0 [386]

INC adds 1 to its operand. It doewst affect the carry flag: to affect the carry flag, use
ADD something,1 (see section A.5.3)NC affects all the other flags according to the result.

67

A.5.121

A5.121.1

A.5.122

This instruction can be used withL® CKprefix to allow atomic execution.

See als®EC(section A.5.58).

INSB, INSW, INSD: Input String from 1/O Port
INSB ' 6C [186]

INSW : 016 6D [186]

INSD : 032 6D [386]

INSB inputs a byte from the 1/O port specifiedXand stores it ES:DI] or [ES:EDI]
It then increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements ifitis sefpl or EDI. The flags are not modified.

The register used Bl if the address size is 16 bits, aB®I ifitis 32 bits. If you need to use an
address size not equal to the currBRES setting, you can use an explieil6 ora32 prefix.

Segment override prefixes have no effect for this instruction: the uES &br the load from
[DI] or[EDI] cannotbe overridden.

INSWandINSD work in the same way, but they input a word or a doubleword instead of a byte,
and increment or decrement the addressing register by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instructi(or ECX- again, the address size chooses
which) times. Th&REPaliasREPE as well as the differently-encod&EPNEare both allowed
as well. They behave in the same wayRisP,

See als®UTSBOUTSVNdOUTSOsection A.5.195).
Pseudo-code examples
al6 INSB and with Direction Flag clear (UP) is equal to

IN BYTE [ES:DI], DX
LEA DI, [DI + 1]

alé REP INSWand with Direction Flag clear (UP) is equal to

JCXZ @FF

@@:

IN WORD [ES:DI], DX
LEA DI, [DI + 2]

alé6 LOOP @B

@O:

a32 INSD with Direction Flag set (DN) is equal to

IN DWORD [ES:EDI], DX
LEA EDI, [EDI - 4]

INT : Software Interrupt
INT imm8 ;CDib [8086]

INT causes a software interrupt through a specified vector number from 0 to 255.

68

A.5.123

A.5.124

A.5.125

A.5.126

A.5.127

The code generated by tHBIT instruction is always two bytes long: although there are
short forms for soméNT instructions, NASM does not generate them when it seefi\fie
mnemonic. In order to generate single-byte breakpoint instructions, uddl3e or INT1
instructions (see section A.5.123) instead.

INT3, INT1, ICEBP, INTO1 : Breakpoints

INT1 - F1 [P6]
ICEBP - F1 [P6]
INTO1 T F1 [P6]
INT3 - CC [8086]
INTO3 . CC [8086]

INT1 andINT3 are short one-byte forms of the instructidh 1 andINT 3 (see section
A.5.122). They perform a similar function to their longer counterparts, but take up less code
space. They are used as breakpoints by debuggers.

* INT1,andits alternative synonymisTO1 andICEBP, is an instruction used by in-circuit
emulators (ICEs). It is present, though not documented, on some processors down to the
286, but is only documented for the Pentium RMT3 is the instruction normally used
as a breakpoint by debuggers.

e INT3,andits synonyriNTO3 , is not precisely equivalenttdlT 3:the shortform, since
itis designed to be used as a breakpoint, bypasses the n@Rlalchecks in virtual-8086
mode, and also does not go through interrupt redirection.

INTO: Interrupt if Overflow
INTO ' CE [8086]

INTO performs ariINT 4 software interrupt (see section A.5.122) if and only if the overflow
flag is set.

INVD: Invalidate Internal Caches
INVD : OF 08 [486]

INVD invalidates and empties the processor's internal caches, and causes the processor to
instruct external caches to do the same. It does not write the contents of the caches back to
memory first: any modified data held in the caches will be lost. To write the data back first, use
WBINVD(section A.5.328).

INVLPG: Invalidate TLB Entry
INVLPG mem ; OF 01 /7 [486]

INVLPG invalidates the translation lookahead buffer (TLB) entry associated with the supplied
memory address.

IRET, IRETW, IRETD: Return from Interrupt

IRET . CF [8086]
IRETW - 016 CF [8086]

69

A.5.128

A.5.129

A.5.130

IRETD : 032 CF [386]

IRET returns from an interrupt (hardware or software) by means of pogpin@r EIP), CS
and the flags off the stack and then continuing execution from theQg\e .

IRETWpopsIP , CSand the flags as 2 bytes each, taking 6 bytes off the stack in iRE&TI.D
popsEIP as 4 bytes, pops a further 4 bytes of which the top two are discarded and the bottom
two go intoCS and pops the flags as 4 bytes as well, taking 12 bytes off the stack.

IRET is a shorthand for eitheRETWor IRETD, depending on the defalBiTS setting at the
time.

Jcc : Conditional Branch

Jccimm ; 70+ccrb [8086]
Jcc NEAR imm ; OF 80+cc rwi/rd [386]
Jcc NEAR imm ; 70+(cc™1) 03 E9 rw [8086]

The conditional jump instructions execute a near (same segment) jump if and only if their
conditions are satisfied. For examp)®&lZ jumps only if the zero flag is not set.

The ordinary form of the instructions has only a 128-byte range. The single-instrindHAR

form is a 386 extension to the instruction set, and can span the full size of a segment. When
CPUis set to 386, NASM will automatically choose the single-instruchid@ARform when the

jump exceeds thEHORTrange.

WhenCPUis set to below 386 (any of 286, 186, 8086), recent versions of NASM will generate
two instructions to work around the range limitation. The first instruction will be a short
conditional jump of the opposite condition code as the one desired. This first jump will (if
taken) jump to behind the second instruction, which is an unconditional near jump. (Only the
16-bit variant is shown for this, because 32-bit assembly means that the single-instruction form
is available.)

You can override the choice of jump instruction using an exp8&iORTkeyword, which will
cause an error ifthe jump targetis out of range. Also, an ex@RICT NEARjualifier makes
NASM always use the single-instruction near jump, even if not neededPlfis set to below
386, this will result in an error.) There is no way to force the work around pair of instructions;
if you want these unconditionally, you have to code them manually.

For details of the condition codes, see section A.2.2.

JCXZ, JECXZ Jump if CX/ECX Zero

JCXZ imm ;al6 E3rb [8086]
JECXZ imm ;a32E3rb [386]

JCXZ performs a short jump (with maximum range 128 bytes) if and only if the contents of the
CXregister is 0JECXZdoes the same thing, but wiECX

JMP. Jump

JMP imm ; E9 rw/rd [8086]

JMP SHORT imm ;EBrb [8086]
JMP imm:imm16 ; 016 EA iw iw [8086]

70

JMP imm:imm32 ; 032 EAid iw [386]

JMP FAR mem ; 016 FF /5 [8086]
JMP FAR mem32 ; 032 FF /5 [386]
JMP r/m16 ;016 FF /4 [8086]
JMP r/m32 ; 032 FF /4 [386]

JMPjumps to a given address. The address may be specified as an absolute segment and offset,
or as a relative jump within the current segment.

JMP SHORT imrhas a maximum range of 128 bytes, since the displacement is specified as
only 8 bits, but takes up less code space. Recent versions of NASM automatically generate
aJMP SHORTor you when the target is in range and known during assembling (ie, before
linking). Specifying theSHORTkeyword explicitly will cause an error if the jump target is out

of range. Specifying 8TRICT NEARqualifier forces NASM to assemble a near jump, even

if the target is in range of a short jump.

You can choose between the two immediate far jump fornd8IR imm:imm)
by the use of theWORDand DWORDkeywords: JIMP WORD 0x1234:0x5678 or
JMP DWORD 0x1234:0x56789abc.

The JMP FAR menfiorms execute a far jump by loading the destination address out of
memory. The address loaded consists of 16 or 32 bits of offset (depending on the operand size),
and 16 bits of segment. The operand size may be overridden JigiRgWORD FAR mem

JMP DWORD FAR mem

TheJMP r/m forms execute a near jump (within the same segment), loading the destination
address out of memory or out of a register. The keywdEthARmay be specified, for clarity, in
these forms, butis not necessary. Again, operand size can be overriddedMBing/ORD mem
orJMP DWORD mem

As a convenience, NASM does not require you to jump to a far symbol by coding
the cumbersomdMP SEG routine:routine , but instead allows the easier synonym
JMP FAR routine .

A.5.131 LAHFE Load AH from Flags
LAHF ' OF [8086]
LAHF sets theAHregister according to the contents of the low byte of the flags word.
The operation oL AHFis:
AH <-- SF:ZF:0:AF:0:PF:1:CF
See als®AHF(section A.5.282).
A.5.132 LAR Load Access Rights

LAR regl16,r/m16 ; 016 OF 02 /r [286,PRIV]
LAR reg32,r/m32 ;032 OF 02 /r [386,PRIV]

LARtakes the segment selector specified by its source (second) operand, finds the corresponding
segment descriptor in the GDT or LDT, and loads the access-rights byte of the descriptor into
its destination (first) operand.

71

A.5.133

A.5.134

A.5.135

LDMXCSRLoad Streaming SIMD Extension Control/Status
LDMXCSR mem32 ; OF AE /2 [KATMAI,SSE]

LDMXCSRloads 32-bits of data from the specified memory location into EM€CSR
control/status registeMXCSRs used to enable masked/unmasked exception handling, to set
rounding modes, to set flush-to-zero mode, and to view exception status flags.

For details of theVIXCSRegister, see the Intel processor docs.

See als&TMXCSRsection A.5.302
LDS, LES, LFS, LGS LSS: Load Far Pointer

LDS regl6,mem ;016 C5 /r [8086]
LDS reg32,mem ;032C5 /Ir [386]

LES regl6,mem ;016 C4 /r [8086]
LES reg32,mem ;032 C4 Ir [386]

LFS regl6,mem ; 016 OF B4 /r [386]
LFS reg32,mem ;032 OF B4 Ir [386]
LGS regl6,mem ; 016 OF B5 /r [386]
LGS reg32,mem ;032 OF B5 /r [386]
LSS regl6,mem ; 016 OF B2 /r [386]
LSS reg32,mem ; 032 0F B2 /r [386]

These instructions load an entire far pointer (16 or 32 bits of offset, plus 16 bits of segment) out
of memory in one goLDS, for example, loads 16 or 32 bits from the given memory address
into the given register (depending on the size of the register), then loadsxhks bits from
memory intoDS LES, LFS, LGSandLSS work in the same way but use the other segment
registers.

LEA: Load Effective Address

LEA regl6,mem ;016 8D /r [8086]
LEA reg32,mem ;0328D /Ir [386]

LEA, despite its syntax, does not access memory. It calculates the effective address specified
by its second operand as if it were going to load or store data from it, but instead it stores the
calculated address into the register specified by its first operand. This can be used to perform
quite complex calculations (e.gEA EAX,[EBX+ECX*4+100]) in one instruction.

LEA, despite being a purely arithmetic instruction which accesses no memory, still requires
square brackets around its second operand, as if it were a memory reference.

The size of the calculation is the currerttdresssize, and the size that the result is stored as is
the currenbperandsize. If the address and operand size are not the same, then if the addressing
mode was 32-bits, the low 16-bits are stored, and if the address was 16-bits, it is zero-extended
to 32-bits before storing.

The ModR/M byte (see section A.2.6) can encode a register as source operand, but this is an
invalid instruction.

72

A.5.136

A.5.137

A.5.138

LEAVE Destroy Stack Frame
LEAVE ; C9 [186]

LEAVEdestroys a stack frame of the form created byENG ERnstruction (see section A.5.65).
It is functionally equivalent taMOV ESP,EBPfollowed by POP EBP(or MOV SP,BP
followed by POP BHn 16-bit mode).

LFENCE Load Fence
LFENCE : OF AE /5 [WILLAMETTE,SSE2]

LFENCEperforms a serialising operation on all loads from memory that were issued before the
LFENCEnstruction. This guarantees that all memory reads beforeRENCEnstruction are
visible before any reads after thEENCEinstruction.

LFENCEis ordered respective to otheFENCEinstruction, MFENCEany memory read and
any other serialising instruction (such@BUID).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue and speculative reads. The degree to which a consumer
of data recognizes or knows that the data is weakly ordered varies among applications and may
be unknown to the producer of this data. THFEENCEinstruction provides a performance-
efficient way of ensuring load ordering between routines that produce weakly-ordered results
and routines that consume that data.

LFENCEuses the following ModR/M encoding:

Mod (7:6) =11B
Reg/Opcode (5:3) = 101B
R/M (2:0) =000B

All other ModR/M encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See als6GFENCHsection A.5.288) anMFENCHEsection A.5.151).

LGDT, LIDT, LLDT: Load Descriptor Tables
LGDT mem ; OF 01 /2 [286,PRIV]
LIDT mem , OF 01 /3 [286,PRIV]
LLDT r/m16 ; OF 00 /2 [286,PRIV]

LGDTandLIDT both take a 6-byte memory area as an operand: they load a 16-bit size limit
and a 32-bit linear address from that area (limit word first, then linear address dword) into the
GDTR(global descriptor table register) TR (interrupt descriptor table register). The GDT
and IDT instructions are the only instructions which directly lisear addresses, rather than
segment/offset pairs.

LLDT takes a segment selector as an operand. The processor looks up that selector in the GDT
and stores the limit and base address given there intioDi& (local descriptor table register).

See als&GDTSIDT andSLDT (section A.5.289).

73

A.5.139 LMSWLoad/Store Machine Status Word
LMSW r/m16 :0F 01 /6 [286,PRIV]

LMSWoads the bottom four bits of the source operand into the bottom four bits dZR@e
control register (or the Machine Status Word, on 286 processors). Se&MISt\(section

A.5.296).

A.5.140 LOADALL LOADALL286. Load Processor State
LOADALL - OF 07 [386,UNDOC]
LOADALL286 - OF 05 [286,UNDOC]

This instruction, in its two different-opcode forms, is apparently supported on most 286
processors, some 386 and possibly some 486. The opcode differs between the 286 and the 386.

The function of the instruction is to load all information relating to the state of the processor out
of a block of memory: on the 286, this block is located implicitly at absolute ad@e3G0 ,
and on the 386 and 486 it is @S:EDI]

A.5.141 LODSBLODSWLODSD Load from String

LODSB - AC [8086]
LODSW - 016 AD [8086]
LODSD - 032 AD [386]

LODSBloads a byte fronjDS:SI] or [DS:ESI] into AL. It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it iSIset)
ESI. The flags are not modified.

The register used 8l if the address size is 16 bits, aB&| ifitis 32 bits. If you need to use an
address size not equal to the currBRES setting, you can use an explieil6 ora32 prefix.

The segment register used to load frf@#i] or[ESI] can be overridden by using a segment
register name as a prefix (for examgss LODSR

LODSWANndLODSDwork in the same way, but they load a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instructi®X(or ECX- again, the address size chooses
which) times. ThdREPaliasREPE as well as the differently-encod®&EPNEare both allowed
as well. They behave in the same wayRisP,

A.5.141.1 Pseudo-code examples
al6é LODSBwithout segment override and with Direction Flag clear (UP) is equal to

MOV AL, BYTE [SI]
LEA SI, [SI + 1]

a32 ES LODSDwith Direction Flag set (DN) is equal to

MOV EAX, DWORD [ES:ESI]
LEA ESI, [ESI - 4]

74

A.5.142

A.5.143

A.5.144

A.5.145

LOOR LOOPELOOPZ LOOPNELOOPNZLoop with Counter

LOOP imm yE2rb [8086]
LOOP imm,CX ;al6 E2 rb [8086]
LOOP imm,ECX ;a32E2rb [386]
LOOPE imm ;Elrb [8086]
LOOPE imm,CX ;al6 E1lrb [8086]
LOOPE imm,ECX ;a32Elrb [386]
LOOPZ imm ;E1rb [8086]
LOOPZ imm,CX ;al6 E1lrb [8086]
LOOPZ imm,ECX ;a32Elrb [386]
LOOPNE imm ;EOrb [8086]
LOOPNE imm,CX ;al6 EOrb [8086]
LOOPNE imm,ECX ;a32 EOrb [386]
LOOPNZ imm ;EOrb [8086]
LOOPNZ imm,CX ;al6 EOrb [8086]
LOOPNZ imm,ECX ;a32 EOrb [386]

LOOPdecrements its counter register (eitl@or ECX- if one is not specified explicitly, the
BITS setting dictates which is used) by one, and if the counter does not become zero as a result
of this operation, it jumps to the given label. The jump has a range of 128 bytes.

LOOPHor its synonynLOOPZ adds the additional condition that it only jumps if the counter
is nonzerandthe zero flag is set. SimilarlzZOOPNHKandLOOPNZXjumps only if the counter
is nonzero and the zero flag is clear.

LSL: Load Segment Limit

LSL reg16,r/m16 ; 016 OF 03 /r [286,PRIV]
LSL reg32,r/m32 ; 032 OF 03 /r [386,PRIV]

LSL is given a segment selector in its source (second) operand; it computes the segment limit
value by loading the segment limit field from the associated segment descriptorGDihar

LDT. (This involves shifting left by 12 bits if the segment limit is page-granular, and not if it

is byte-granular; so you end up with a byte limit in either case.) The segment limit obtained is
then loaded into the destination (first) operand.

LTR: Load Task Register
LTR r/m16 ; OF 00 /3 [286,PRIV]

LTRIlooks up the segment base and limitinthe GDT or LDT descriptor specified by the segment
selector given as its operand, and loads them into the Task Register.

MASKMOVDQ@QBYyte Mask Write
MASKMOVDQU xmm1,xmm2 ;66 OF F7 /r [WILLAMETTE,SSEZ2]

MASKMOVDGQtbres data from xmm1 to the location specifiedd@8/(E)DI . The size of the
store depends on the address-size attribute. The most significant bit in each byte of the mask
register xmmz2 is used to selectively write the data (0 = no write, 1 = write) on a per-byte basis.

75

A.5.146

A.5.147

A.5.148

A.5.149

A.5.150

A.5.151

MASKMOV@yte Mask Write
MASKMOVQ mml,mm2 : OF F7 Ir [KATMAI,MMX]

MASKMOV$Qores data from mm1 to the location specifiedd3y(E)DI . The size of the store
depends on the address-size attribute. The most significant bit in each byte of the mask register
mm2 is used to selectively write the data (O = no write, 1 = write) on a per-byte basis.

MAXPDReturn Packed Double-Precision FP Maximum
MAXPD xmmZ1,xmm2/m128 ;66 OF 5F /r [WILLAMETTE,SSEZ2]

MAXPperforms a SIMD compare of the packed double-precision FP numbers from xmm1 and
xmm2/mem, and stores the maximum values of each pair of values in xmmL1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

MAXPSReturn Packed Single-Precision FP Maximum
MAXPS xmm1,xmm2/m128 ; OF 5F /r [KATMAI,SSE]

MAXP Serforms a SIMD compare of the packed single-precision FP numbers from xmm21 and
xmm2/mem, and stores the maximum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

MAXSDReturn Scalar Double-Precision FP Maximum
MAXSD xmm1,xmm2/m64 :F20F5F /r [WILLAMETTE,SSEZ2]

MAXSDcompares the low-order double-precision FP numbers from xmm1 and xmm2/mem,
and stores the maximum value in xmmZ1. If the values being compared are both zeroes, source2
(xmm2/m64) would be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high
guadword of the destination is left unchanged.

MAXSSReturn Scalar Single-Precision FP Maximum
MAXSS xmm1,xmm2/m32 ; F30F 5F /r [KATMAI,SSE]

MAXSSompares the low-order single-precision FP numbers from xmm1 and xmm2/mem, and
stores the maximum value in xmml1. If the values being compared are both zeroes, source2
(xmm2/m32) would be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high three
doublewords of the destination are left unchanged.

MFENCEMemory Fence
MFENCE ; OF AE /6 [WILLAMETTE,SSEZ2]

MFENCHBerforms a serialising operation on all loads from memory and writes to memory that
were issued before tHdFENCHEnstruction. This guarantees that all memory reads and writes

76

A.5.152

A.5.153

A.5.154

before theMFENCHnNstruction are completed before any reads and writes aftavifFlENCE
instruction.

MFENCEHs ordered respective to otheiFENCHnstructions|. FENCE SFENCEany memory
read and any other serialising instruction (suclC&4J1D).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.
The degree to which a consumer of data recognizes or knows that the data is weakly ordered
varies among applications and may be unknown to the producer of this datMHABRCE
instruction provides a performance-efficient way of ensuring load and store ordering between
routines that produce weakly-ordered results and routines that consume that data.

MFENCHses the following ModR/M encoding:

Mod (7:6) =11B
Reg/Opcode (5:3) = 110B
R/M (2:0) =000B

All other ModR/M encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsd.FENCE(section A.5.137) an@FENCHsection A.5.288).

MINPD Return Packed Double-Precision FP Minimum
MINPD xmm1,xmm2/m128 ;66 OF 5D /r [WILLAMETTE,SSE2]

MINPDperforms a SIMD compare of the packed double-precision FP numbers from xmm1 and
xmm2/mem, and stores the minimum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

MINPS Return Packed Single-Precision FP Minimum
MINPS xmm1,xmm2/m128 ; OF 5D /r [KATMAI,SSE]

MINPSperforms a SIMD compare of the packed single-precision FP numbers from xmm21 and
xmm2/mem, and stores the minimum values of each pair of values in xmmZ1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128)
is an SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the
SNaN is not returned).

MINSD Return Scalar Double-Precision FP Minimum
MINSD xmm21,xmm2/m64 :F20F 5D /r [WILLAMETTE,SSEZ?]

MINSD compares the low-order double-precision FP numbers from xmm1 and xmm2/mem,
and stores the minimum value in xmmL1. If the values being compared are both zeroes, source2
(xmm2/m64) would be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high
quadword of the destination is left unchanged.

77

A.5.155

A.5.156

MINSS Return Scalar Single-Precision FP Minimum

MINSS xmm1,xmm2/m32 ; F30F 5D /r [KATMAI,SSE]

MINSScompares the low-order single-precision FP numbers from xmm1 and xmm2/mem, and
stores the minimum value in xmm1. If the values being compared are both zeroes, source2
(xmm2/m32) would be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high three
doublewords of the destination are left unchanged.

MOV Move Data

MOV r/m8,reg8 ; 88 /r [8086]

MOV r/m16,reg16 ; 016 89 /r [8086]
MOV r/m32,reg32 ;03289 /r [386]
MOV reg8,r/m8 ; 8AIr [8086]
MOV reg16,r/m16 ; 016 8B /r [8086]
MOV reg32,r/m32 ;032 8B Ir [386]
MOV reg8,imm38 ; BO+rib [8086]
MOV regl16,imm16 ; 016 B8+r iw [8086]
MOV reg32,imm32 ; 032 B8+rid [386]
MOV r/m8,imm8 ; C6/0ib [8086]
MOV r/m16,imm16 ;016 C7 /0 iw [8086]
MOV r/m32,imm32 ;032C7/0id [386]
MOV AL,memoffs8 ; AO ow/od [8086]

MOV AX,memoffs16 ; 016 Al ow/od [8086]
MOV EAX,memoffs32 ; 032 Al ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX ; 016 A3 ow/od [8086]
MOV memoffs32,EAX ; 032 A3 ow/od [386]
MOV r/m16,segreg ; 016 8C /r [8086]
MOV r/m32,segreg ;032 8C /Ir [386]
MOV segreg,r/m16 ; 016 8E /r [8086]
MOV segreg,r/m32 ; 032 8E Ir [386]
MOV reg32,CR0/2/3/4 ; OF 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ; OF 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; OF 24 /r [386]
MOV CRO0/2/3/4,reg32 ; OF 22 /v [386]
MOV DRO0/1/2/3/6/7,reg32 ; OF 23 Ir [386]
MOV TR3/4/5/6/7,reg32 ; OF 26 /r [386]

MO\topies the contents of its source (second) operand into its destination (first) operand.

In all forms of theMOVinstruction, the two operands are the same size, except for moving
between a segment register andan32 operand. These instructions are treated exactly like
the corresponding 16-bit equivalent (so that, for examdi®y DS,EAXunctions identically

to MOV DS,AXbut saves a prefix when in 32-bit mode), except that when a segment register
is moved into a 32-bit destination, the top two bytes of the result are undefined.

78

A.5.157

A.5.158

A.5.159

A.5.160

A.5.161

MOWnay not us€CSas a destination. However, this can be encoded, which is silently accepted
by current versions of NASM, and is decoded by NDISASM.

CRd4is only a supported register on the Pentium and above.

Test registers are supported on 386/486 processors and on some non-Intel Pentium class
processors.

MOVAPDMove Aligned Packed Double-Precision FP Values

MOVAPD xmm1,xmm2/mem128 ;66 OF 28 /r [WILLAMETTE,SSEZ?]
MOVAPD xmm1/mem128,xmm2 ;66 OF 29 /r [WILLAMETTE,SSEZ?]

MOVAPDnoves a double quadword containing 2 packed double-precision FP values from the
source operand to the destination. When the source or destination operand is a memory location,
it must be aligned on a 16-byte boundary.

To move data in and out of memory locations that are not known to be on 16-byte boundaries,
use theMOVUPINstruction (section A.5.182).

MOVAPSMove Aligned Packed Single-Precision FP Values

MOVAPS xmm1,xmm2/mem128 ; OF 28 Ir [KATMAI,SSE]
MOVAPS xmm1/mem128,xmm2 ; OF 29 /r [KATMAI,SSE]

MOVAP3noves a double quadword containing 4 packed single-precision FP values from the
source operand to the destination. When the source or destination operand is a memory location,
it must be aligned on a 16-byte boundary.

To move data in and out of memory locations that are not known to be on 16-byte boundaries,
use theMOVUP&struction (section A.5.183).

MOVDMove Doubleword to/from MMX Register

MOVD mm,r/m32 : OF 6E /r [PENT,MMX]
MOVD r/m32,mm :OF 7E Ir [PENT,MMX]
MOVD xmm,r/m32 ;66 OF 6E /r [WILLAMETTE,SSEZ2]
MOVD r/m32,xmm ;66 OF 7TE /r [WILLAMETTE,SSEZ2]

MOVI[zopies 32 bits from its source (second) operand into its destination (first) operand. When
the destination is a 64-HilMXegister or a 128-bXMMegister, the input value is zero-extended
to fill the destination register.

MOVDQ2Move Quadword from XMM to MMX register.
MOVDQ2Q mm,xmm ' F2OF D6 /r [WILLAMETTE,SSE?2]

MOVDQ2@oves the low quadword from the source operand to the destination operand.

MOVDQAVove Aligned Double Quadword

MOVDQA xmm1,xmm2/m128 ; 66 OF 6F /r [WILLAMETTE,SSEZ?]
MOVDQA xmm1/m128,xmm2 ;66 OF 7F /r [WILLAMETTE,SSEZ?]

79

A.5.162

A.5.163

A.5.164

A.5.165

MOVDQ#oves a double quadword from the source operand to the destination operand. When
the source or destination operand is amemory location, it must be aligned to a 16-byte boundary.

To move a double quadword to or from unaligned memory locations, uséM¥DQU
instruction (section A.5.162).

MOVDQWIove Unaligned Double Quadword

MOVDQU xmm1,xmm2/m128 ; F3OF 6F /r [WILLAMETTE,SSEZ?]
MOVDQU xmm1/m128,xmm2 ; F3OF 7F /Ir [WILLAMETTE,SSEZ?]

MOVDQuhoves a double quadword from the source operand to the destination operand. When
the source or destination operand is a memory location, the memory may be unaligned.

To move a double quadword to or from known aligned memory locations, us@éDQA
instruction (section A.5.161).

MOVHLPSMove Packed Single-Precision FP High to Low
MOVHLPS xmm1,xmm2 ; OF 12 /r [KATMAI,SSE]

MOVHLPSnoves the two packed single-precision FP values from the high quadword of the
source register xmm2 to the low quadword of the destination register, xmm2. The upper
guadword of xmm1 is left unchanged.

The operation of this instruction is:

dst[0-63] := src[64-127],
dst[64-127] remains unchanged.

MOVHPDMove High Packed Double-Precision FP

MOVHPD xmm,m64 ;66 OF 16 /r [WILLAMETTE,SSEZ?]
MOVHPD m64,xmm ;66 OF 17 /r [WILLAMETTE,SSEZ2]

MOVHPDoves a double-precision FP value between the source and destination operands. One
of the operands is a 64-bit memory location, the other is the high quadwordXd¥dfegister.

The operation of this instruction is:
mem|[0-63] :=xmm[64-127];
or

xmm[0-63] remains unchanged;
xmm[64-127] := mem[0-63].

MOVHPSMove High Packed Single-Precision FP

MOVHPS xmm,m64 ; OF 16 /r [KATMAI,SSE]
MOVHPS m64,xmm ; OF 17 Ir [KATMAI,SSE]

MOVHPS3noves two packed single-precision FP values between the source and destination
operands. One of the operands is a 64-bit memory location, the other is the high quadword of
anXMMegister.

80

A.5.166

A.5.167

A.5.168

The operation of this instruction is:
mem|[0-63] :=xmm[64-127];
or

xmm[0-63] remains unchanged;
xmm[64-127] := mem[0-63].

MOVLHPSMove Packed Single-Precision FP Low to High
MOVLHPS xmmZ1,xmm2 ; OF 16 /r [KATMAI,SSE]

MOVLHPSnoves the two packed single-precision FP values from the low quadword of the
source register xmmz2 to the high quadword of the destination register, xmmz2. The low quadword
of xmm1 is left unchanged.

The operation of this instruction is:

dst[0-63] remains unchanged;
dst[64-127] := src[0-63].

MOVLPDMove Low Packed Double-Precision FP

MOVLPD xmm,m64 ;66 OF 12 /r [WILLAMETTE,SSEZ]
MOVLPD m64,xmm ;66 OF 13 /r [WILLAMETTE,SSEZ]

MOVLPDnoves a double-precision FP value between the source and destination operands. One
of the operands is a 64-bit memory location, the other is the low quadwordXi¥megister.

The operation of this instruction is:
mem(0-63) :=xmm(0-63);
or

xmm(0-63) := mem(0-63);
xmm(64-127) remains unchanged.

MOVLPSMove Low Packed Single-Precision FP

MOVLPS xmm,m64 ;OF 12 Ir [KATMAI,SSE]
MOVLPS m64,xmm ; OF 13 Ir [KATMAI,SSE]

MOVLPSmoves two packed single-precision FP values between the source and destination
operands. One of the operands is a 64-bit memory location, the other is the low quadword of an
XMMegister.

The operation of this instruction is:
mem(0-63) :=xmm(0-63);

or
xmm(0-63) := mem(0-63);

xmm(64-127) remains unchanged.

81

A.5.169

A.5.170

A5.171

A.5.172

A.5.173

A5.174

A.5.175

MOVMSKRIExtract Packed Double-Precision FP Sign Mask
MOVMSKPD reg32,xmm ;66 OF 50 /r [WILLAMETTE,SSE2]

MOVMSKPDserts a 2-bit mask in r32, formed of the most significant bits of each double-
precision FP number of the source operand.

MOVMSKPRExtract Packed Single-Precision FP Sign Mask
MOVMSKPS reg32,xmm ;OF50/r [KATMAISSE]

MOVMSKP#®iserts a 4-bit mask in r32, formed of the most significant bits of each single-
precision FP number of the source operand.

MOVNTDOMove Double Quadword Non Temporal
MOVNTDQ m128,xmm ;66 OF E7 /r [WILLAMETTE,SSEZ2]

MOVNTD@oves the double quadword from tKk&Msource register to the destination memory
location, using a non-temporal hint. This store instruction minimizes cache pollution.

MOVNTI Move Doubleword Non Temporal
MOVNTI m32,reg32 ;OF C3/r [WILLAMETTE,SSE?2]

MOVNTImoves the doubleword in the source register to the destination memory location, using
a non-temporal hint. This store instruction minimizes cache pollution.

MOVNTPIMove Aligned Four Packed Single-Precision FP Values Non
Temporal

MOVNTPD m128,xmm ;66 OF 2B /r [WILLAMETTE,SSEZ2]

MOVNTPIDhoves the double quadword from tiMsource register to the destination memory
location, using a non-temporal hint. This store instruction minimizes cache pollution. The
memory location must be aligned to a 16-byte boundary.

MOVNTPSMove Aligned Four Packed Single-Precision FP Values Non
Temporal

MOVNTPS m128,xmm ; OF 2B Ir [KATMAI,SSE]

MOVNTP&oves the double quadword from tiMsource register to the destination memory
location, using a non-temporal hint. This store instruction minimizes cache pollution. The
memory location must be aligned to a 16-byte boundary.

MOVNTMove Quadword Non Temporal
MOVNTQ m64,mm ;OF E7 Ir [KATMAI,MMX]

MOVNT@oves the quadword in tHdM>source register to the destination memory location,
using a non-temporal hint. This store instruction minimizes cache pollution.

82

A.5.176

A5.177

A.5.178

A.5.178.1

MOVOQMove Quadword to/from MMX Register

MOVQ mml1,mm2/m64 : OF 6F /Ir [PENT,MMX]
MOVQ mm1/m64,mm2 OF 7F Ir [PENT,MMX]
MOVQ xmm1l,xmm2/m64 ; F30F 7E /r [WILLAMETTE,SSEZ2]
MOVQ xmm1/m64,xmm2 ;66 OF D6 /r [WILLAMETTE,SSEZ2]

MOV @opies 64 bits from its source (second) operand into its destination (first) operand. When
the source is alXMMregister, the low quadword is moved. When the destination XM
register, the destination is the low quadword, and the high quadword is cleared.

MOVQ2DMMove Quadword from MMX to XMM register.
MOVQ2DQ xmm,mm F3OFD6/r [WILLAMETTE,SSEZ]

MOVQ2D@oves the quadword from the source operand to the low quadword of the destination
operand, and clears the high quadword.

MOVSBMOVSWOVSbMove String

MOVSB - Ad [8086]
MOVSW - 016 A5 [8086]
MOVSD - 032 A5 [386]

MOVSBcopies the byte afDS:SI] or [DS:ESI] to [ES:DI] or [ES:EDI] . It then
increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements ifitis setpl andDI (or ESI andEDI). The flags are not modified.

The registers used aB andDI if the address size is 16 bits, aB&| andEDI if itis 32 bits.
If you need to use an address size not equal to the cuBI&® setting, you can use an explicit
al6 ora32 prefix.

The segment register used to load frf|i] or[ESI] can be overridden by using a segment
register name as a prefix (for exampeS MOVSB The use oES for the store tdDI] or
[EDI] cannot be overridden.

MOVSWndMOVSDvork in the same way, but they copy a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instruct®X(or ECX- again, the address size chooses
which) times. Th&REPaliasREPE as well as the differently-encod&EPNEare both allowed
as well. They behave in the same wayREsP,

Pseudo-code examples
alé MOVSBwithout segment override and with Direction Flag clear (UP) is equal to

MOV BYTE [ES:DI], BYTE [SI]
LEA SI, [SI + 1]
LEA DI, [DI + 1]

alé REP MOVSWithout segment override and with Direction Flag clear (UP) is equal to
JCXZ @FF

83

A.5.179

A.5.180

A.5.181

A.5.182

@O:

MOV WORD [ES:DI], WORD [SI]
LEA SI, [SI + 2]

LEA DI, [DI + 2]

alé LOOP @B

@Q@:

a32 ES MOVSDwvith Direction Flag set (DN) is equal to

MOV DWORD [ES:EDI], DWORD [ES:ESI]
LEA ESI, [ESI - 4]
LEA EDI, [EDI - 4]

MOVSDMove Scalar Double-Precision FP Value

MOVSD xmm1,xmm2/m64 , F20F 10 /r [WILLAMETTE,SSEZ?]
MOVSD xmm1/m64,xmm2 ;F20F 11 /r [WILLAMETTE,SSEZ?]

MOVSDnoves a double-precision FP value from the source operand to the destination operand.
When the source or destination is a register, the low-order FP value is read or written.

MOVSSMove Scalar Single-Precision FP Value

MOVSS xmm1,xmm2/m32 ;F30F 10 /r [KATMAI,SSE]
MOVSS xmm1/m32,xmm2 ;F30F 11 /r [KATMAI,SSE]

MOVS$noves a single-precision FP value from the source operand to the destination operand.
When the source or destination is a register, the low-order FP value is read or written.

MOVSXMOVZXMove Data with Sign or Zero Extend

MOVSX reg16,r/m8 ; 016 OF BE /r [386]
MOVSX reg32,r/m8 ;032 0F BE /Ir [386]
MOVSX reg32,r/m16 ; 032 OF BF /r [386]
MOVZX regl16,r/m8 ; 016 OF B6 /r [386]
MOVZX reg32,r/m8 ; 032 OF B6 /r [386]
MOVZX reg32,r/m16 ; 032 OF B7 Ir [386]

MOV SXsign-extends its source (second) operand to the length of its destination (first) operand,
and copies the result into the destination oper8@\VZXloes the same, but zero-extends rather
than sign-extending.

MOVUPDMove Unaligned Packed Double-Precision FP Values

MOVUPD xmm1,xmm2/mem128 ;66 OF 10 /r [WILLAMETTE,SSEZ?]
MOVUPD xmm1/mem128,xmm2 ;66 OF 11 /r [WILLAMETTE,SSEZ2]

MOVUPIIoves a double quadword containing 2 packed double-precision FP values from the
source operand to the destination. This instruction makes no assumptions about alignment of
memory operands.

To move data in and out of memory locations that are known to be on 16-byte boundaries, use
the MOVAPINstruction (section A.5.157).

84

A.5.183

A.5.184

A.5.185

A.5.186

A.5.187

A.5.188

MOVUPSMove Unaligned Packed Single-Precision FP Values

MOVUPS xmm1,xmm2/mem128 ; OF 10 /r [KATMAI,SSE]
MOVUPS xmm1/mem128,xmm2 ; OF 11 /r [KATMAI,SSE]

MOVUP®oves a double quadword containing 4 packed single-precision FP values from the
source operand to the destination. This instruction makes no assumptions about alignment of
memory operands.

To move data in and out of memory locations that are known to be on 16-byte boundaries, use
the MOVAP$struction (section A.5.158).

MUL Unsigned Integer Multiply

MUL r/m8 ;F6 /4 [8086]
MUL r/m16 ;016 F7 /4 [8086]
MUL r/m32 ; 032 F7 /4 [386]

MULperforms unsigned integer multiplication. The other operand to the multiplication, and the
destination operand, are implicit, in the following way:

 ForMUL r/m8, AL is multiplied by the given operand; the product is storedi
 ForMUL r/m16, AXis multiplied by the given operand; the product is storeBX1AX.

 For MUL r/m32, EAXis multiplied by the given operand; the product is stored in
EDX:EAX

Signed integer multiplication is performed by th&UL instruction: see section A.5.118.
MULPDPacked Single-FP Multiply
MULPD xmm1,xmm2/mem128 ;66 OF 59 /r [WILLAMETTE,SSE2]

MULPDperforms a SIMD multiply of the packed double-precision FP values in both operands,
and stores the results in the destination register.

MULPS Packed Single-FP Multiply
MULPS xmm1,xmm2/mem128 :OF 59 /r [KATMAI,SSE]

MULPSerforms a SIMD multiply of the packed single-precision FP values in both operands,
and stores the results in the destination register.

MULSD Scalar Single-FP Multiply
MULSD xmm21,xmm2/mem32 ; F20F 59 /r [WILLAMETTE,SSEZ?]

MULSDnultiplies the lowest double-precision FP values of both operands, and stores the result
in the low quadword of xmm1.

MULSS Scalar Single-FP Multiply
MULSS xmm1,xmm2/mem32 :F30F 59 /r [KATMAI,SSE]

MULSSnultiplies the lowest single-precision FP values of both operands, and stores the result

85

A.5.189

A.5.190

A.5.191

in the low doubleword of xmm1.

NEG NOT Two's and Ones' Complement

NEG r/m8 ; F6 /3 [8086]
NEG r/m16 ;016 F7 /3 [8086]
NEG r/m32 ; 032 F7 /3 [386]
NOT r/m8 ; F6 /2 [8086]
NOT r/m16 ;016 F7 /2 [8086]
NOT r/m32 ;032 F7 /2 [386]

NEGreplaces the contents of its operand by the two's complement negation (invert all the bits
and then add one) of the original validOT similarly, performs ones' complement (inverts all
the bits).

NOTdoes not modify any flags.

NEGsets flags like as if running a subtraction where the operand is subtracted from zero. That
means the Carry Flag is cleared K¥£Gif the operand was zero, and set otherwise. The Zero
Flag is set byNEGaccording to whether the result is zero. If tiEGoperand was zero it means

the result is also zero, and vice versa.

NOP No Operation
NOP £ 90 [8086]

NOPperforms no operation. Its opcode is the same as that generatds€HE AX,AXor
XCHG EAX,EAXdepending on the processor mode; see section A.5.333).

OR Bitwise OR

OR r/m8,reg8 ; 08 Ir [8086]

OR r/m16,reg16 ; 016 09 /r [8086]
OR r/m32,reg32 ; 032 09 /r [386]
OR reg8,r/m8 ; OA Ir [8086]

OR reg16,r/m16 ;016 OB /r [8086]
OR reg32,r/m32 ;0320B /r [386]
OR r/m8,imm8 ;80 /1ib [8086]
OR r/m16,imm16 ;016 81 /1 iw [8086]
OR r/m32,imm32 ;03281/1id [386]
OR r/m16,imm8 ;016 83/1ib [8086]
OR r/m32,imm8 ;03283 /11ib [386]
OR AL,imm8 ; 0C ib [8086]
OR AX,imm16 ; 016 OD iw [8086]
OR EAX,imm32 ;032 0D id [386]

ORperforms a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if
and only if at least one of the corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.

86

A.5.192

A.5.193

A.5.194

A.5.195

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tf8&TRICT WORDr STRICT DWORAQualifier.

The Carry Flag is cleared YR The Zero Flag is set according to whether the result is zero.

The MMX instructionPOR(see section A.5.247) performs the same operation on the 64-bit
MMX registers.

ORPDBit-wise Logical OR of Double-Precision FP Data
ORPD xmm1,xmm2/m128 ;66 OF 56 /r [WILLAMETTE,SSE2]

ORPDreturn a bit-wise logical OR between xmm1 and xmm2/mem, and stores the result in
xmml. If the source operand is a memory location, it must be aligned to a 16-byte boundary.

ORPSBit-wise Logical OR of Single-Precision FP Data
ORPS xmm1,xmm2/m128 ; OF 56 /r [KATMAI,SSE]

ORPSreturn a bit-wise logical OR between xmm1 and xmm2/mem, and stores the result in
xmml. If the source operand is a memory location, it must be aligned to a 16-byte boundary.

OUT Output Data to I/0 Port

OUT imm8,AL ; E6 b [8086]
OUT imm8,AX ;016 E7 ib [8086]
OUT imm8,EAX ;032 E7ib [386]
OUT DX,AL ; EE [8086]
OUT DX,AX ; 016 EF [8086]
OUT DX,EAX ;032 EF [386]

OUTwrites the contents of the given source register to the specified I/O port. The port number
may be specified as an immediate value if itis between 0 and 255, and otherwise must be stored
in DX See alsdN (section A.5.119).

OUTSB OUTSWOUTSDOutput String to 1/0 Port

OUTSB 6E [186]
OUTSW - 016 6F [186]
OUTSD - 032 6F [386]

OUTSBloads a byte froniDS:SI] or [DS:ESI] and writes it to the 1/0O port specified in
DX It then increments or decrements (depending on the direction flag: increments if the flag is
clear, decrements if it is se§l or ESI. The flags are not modified.

The register used 8l if the address size is 16 bits, aB&| ifitis 32 bits. If you need to use an
address size not equal to the currBHES setting, you can use an expliel6 ora32 prefix.

The segment register used to load frf@#i] or[ESI] can be overridden by using a segment
register name as a prefix (for examgss OUTSR

87

A.5.195.1

A.5.196

OuUTSVENndOUTSDwork in the same way, but they output a word or a doubleword instead of
a byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

TheREPprefix may be used to repeat the instruct@(or ECX- again, the address size chooses
which) times. ThéREPaliasREPE as well as the differently-encod®EPNEare both allowed
as well. They behave in the same wayRisP

Pseudo-code examples
alé OUTSBwithout segment override and with Direction Flag clear (UP) is equal to

OUT DX, BYTE [S]]
LEA SI, [SI + 1]

alé REP OUTSWithout segment override and with Direction Flag clear (UP) is equal to

JCXZ @FF

@O:

OUT DX, WORD [SI]
LEA SI, [SI + 2]

alé LOOP @B
@O:

a32 ES OUTSDwith Direction Flag set (DN) is equal to

OUT DX, DWORD [ES:ESI]
LEA ESI, [ESI - 4]

PACKSSDWPACKSSWBACKUSWHRPack Data

PACKSSDW mm1,mm2/m64 ; OF 6B /r [PENT,MMX]
PACKSSWB mm1,mm2/m64 ; OF 63 /r [PENT,MMX]
PACKUSWB mm1,mm2/m64 ; OF 67 Ir [PENT,MMX]

PACKSSDW xmm1,xmm2/m128 ;66 OF 6B /r [WILLAMETTE,SSEZ]
PACKSSWB xmm1,xmm2/m128 ;66 OF 63 /r [WILLAMETTE,SSEZ?]
PACKUSWB xmm1,xmm2/m128 ; 66 OF 67 /r [WILLAMETTE,SSEZ2]

All these instructions start by combining the source and destination operands, and then splitting
the result in smaller sections which it then packs into the destination registaviNlgersions

pack two 64-bit operands into one 64-bit register, while 3&E versions pack two 128-bit
operands into one 128-bit register.

*» PACKSSWBplits the combined value into words, and then reduces the words to bytes,
using signed saturation. It then packs the bytes into the destination register in the same
order the words were in.

» PACKSSDWperforms the same operation #&ACKSSWBexcept that it reduces
doublewords to words, then packs them into the destination register.

» PACKUSWBerforms the same operation BACKSSWBexcept that it uses unsigned
saturation when reducing the size of the elements.

To perform signed saturation on a number, it is replaced by the largest signed nifBEh
or 7Fh) thatwill fit, and if it is too small it is replaced by the smallest signed num&@dQh

88

or 80h) that will fit. To perform unsigned saturation, the input is treated as unsigned, and the
input is replaced by the largest unsigned number that will fit.

A.5.197 PADDBPADDWPADDDAdd Packed Integers

PADDB mm1,mm2/m64 , OF FC Ir [PENT,MMX]
PADDW mm1,mm2/m64 ;OFFD /r [PENT,MMX]
PADDD mm1,mm2/m64 ; OF FE Ir [PENT,MMX]
PADDB xmm1,xmm2/m128 ;66 OF FC /r [WILLAMETTE,SSEZ?]
PADDW xmm1,xmm2/m128 , 66 OF FD /r [WILLAMETTE,SSEZ?]
PADDD xmm1,xmm2/m128 ;66 OF FE /r [WILLAMETTE,SSEZ2]

PADDxperforms packed addition of the two operands, storing the result in the destination (first)
operand.

» PADDBreats the operands as packed bytes, and adds each byte individually;
 PADDWeats the operands as packed words;
» PADDODreats its operands as packed doublewords.

When an individual result is too large to fit in its destination, it is wrapped around and the low
bits are stored, with the carry bit discarded.

A.5.198 PADDQAdd Packed Quadword Integers
PADDQ mm1,mm2/m64 ; OF D4 /r [PENT,MMX]
PADDQ xmm1,xmm2/m128 ;66 OF D4 /r [WILLAMETTE,SSEZ2]

PADDQdds the quadwords in the source and destination operands, and stores the result in the
destination register.

When an individual result is too large to fit in its destination, it is wrapped around and the low
bits are stored, with the carry bit discarded.

A.5.199 PADDSBPADDSWAdd Packed Signed Integers With Saturation

PADDSB mm1,mm2/m64 ;OF EC /Ir [PENT,MMX]
PADDSW mm1,mm2/m64 ; OF ED /r [PENT,MMX]
PADDSB xmm1,xmm2/m128 ;66 OF EC/r [WILLAMETTE,SSEZ?]
PADDSW xmm1,xmm2/m128 ;66 OF ED/r [WILLAMETTE,SSEZ?]

PADDSxperforms packed addition of the two operands, storing the result in the destination
(first) operandPADDSRBreats the operands as packed bytes, and adds each byte individually;
andPADDSWreats the operands as packed words.

When an individual result is too large to fit in its destination, a saturated value is stored. The
resulting value is the value with the largest magnitude of the same sign as the result which will
fitin the available space.

A.5.200 PADDSIWMMX Packed Addition to Implicit Destination
PADDSIW mmxreg,r/m64 :OF 51 /r [CYRIX,MMX]

89

PADDSIW specific to the Cyrix extensions to the MMX instruction set, performs the same
function asPADDSW\except that the result is placed in an implied register.

To work out the implied register, invert the lowest bit in the register number. So
PADDSIW MMO,MM&ould put the result itMM1 but PADDSIW MM1,MM&ould put the

result inMMO

A.5.201 PADDUSBPADDUSWAdd Packed Unsigned Integers With Saturation
PADDUSB mm1,mm2/m64 ; OF DC /r [PENT,MMX]
PADDUSW mm1l,mm2/m64 ; OF DD /r [PENT,MMX]
PADDUSB xmm1,xmm2/m128 ;66 OF DC/r [WILLAMETTE,SSEZ2]
PADDUSW xmm1,xmm2/m128 ;66 OF DD /r [WILLAMETTE,SSEZ2]

PADDUSxperforms packed addition of the two operands, storing the result in the destination
(first) operandPADDUSHRreats the operands as packed bytes, and adds each byte individually;
andPADDUSWeats the operands as packed words.

When an individual result is too large to fit in its destination, a saturated value is stored. The
resulting value is the maximum value that will fit in the available space.

A.5.202 PAND PANDNMMX Bitwise AND and AND-NOT

PAND mm1,mm2/m64 ; OF DB /r [PENT,MMX]
PANDN mm1,mm2/m64 ; OF DF /r [PENT,MMX]
PAND xmm1,xmm2/m128 ;66 OF DB /r [WILLAMETTE,SSEZ?]
PANDN xmm1,xmm2/m128 ; 66 OF DF /r [WILLAMETTE,SSEZ]

PANDperforms a bitwise AND operation between its two operands (i.e. each bit of the result
is 1 if and only if the corresponding bits of the two inputs were both 1), and stores the result in
the destination (first) operand.

PANDNperforms the same operation, but performs a ones' complement operation on the
destination (first) operand first.

A.5.203 PAUSE Spin Loop Hint
PAUSE ; F390 [WILLAMETTE,SSEZ2]

PAUSEprovides a hint to the processor that the following code is a spin loop. This improves
processor performance by bypassing possible memory order violations. On older processors,
this instruction operates afNORP

A.5.204 PAVEB MMX Packed Average
PAVEB mmxreg,r/m64 ; OF 50 /r [CYRIX,MMX]

PAVEB specific to the Cyrix MMX extensions, treats its two operands as vectors of eight
unsigned bytes, and calculates the average of the corresponding bytes in the operands. The
resulting vector of eight averages is stored in the first operand.

This opcode maps tMOVMSKPS r32, xmnon processors that support the SSE instruction
set.

90

A.5.205

A.5.206

A.5.207

PAVGB PAVGWverage Packed Integers

PAVGB mm1,mm2/m64 , OF EO /r [KATMAILMMX]

PAVGW mm1,mm2/m64 ; OF E3 /r [KATMAIL,MMX,SM]
PAVGB xmm1,xmm2/m128 ;66 OF EO/r [WILLAMETTE,SSEZ?]
PAVGW xmm1,xmm2/m128 ;66 OF E3/r [WILLAMETTE,SSEZ?]

PAVGBandPAVGWdd the unsigned data elements of the source operand to the unsigned data

elements of the destination register, then adds 1 to the temporary results. The results of the add
are then each independently right-shifted by one bit position. The high order bits of each element

are filled with the carry bits of the corresponding sum.

 PAVGBoperates on packed unsigned bytes, and
* PAVGVWperates on packed unsigned words.

PAVGUSBAverage of unsigned packed 8-bit values
PAVGUSB mm1,mm2/m64 ; OF OF /r BF [PENT,3DNOW]

PAVGUSRBdds the unsigned data elements of the source operand to the unsigned data elements
of the destination register, then adds 1 to the temporary results. The results of the add are then
each independently right-shifted by one bit position. The high order bits of each element are
filled with the carry bits of the corresponding sum.

This instruction performs exactly the same operations aP&GB MMiXstruction (section
A.5.205).

PCMPxx Compare Packed Integers.

PCMPEQB mm1,mm2/m64 ; OF 74 Ir [PENT,MMX]
PCMPEQW mm1,mm2/m64 ; OF 75 /r [PENT,MMX]
PCMPEQD mm1,mm2/m64 ; OF 76 Ir [PENT,MMX]
PCMPGTB mm1,mm2/m64 ; OF 64 /r [PENT,MMX]
PCMPGTW mm1,mm2/m64 ; OF 65 /r [PENT,MMX]
PCMPGTD mm1,mm2/m64 ; OF 66 /r [PENT,MMX]
PCMPEQB xmm1,xmm2/m128 ;66 OF 74 /r [WILLAMETTE,SSEZ?]
PCMPEQW xmm1,xmm2/m128 ;66 OF 75/r [WILLAMETTE,SSEZ?]
PCMPEQD xmm1,xmm2/m128 ;66 OF 76 /r [WILLAMETTE,SSEZ2]
PCMPGTB xmm1,xmm2/m128 ;66 OF 64 /r [WILLAMETTE,SSEZ?]
PCMPGTW xmm1,xmm2/m128 ;66 OF 65 /r [WILLAMETTE,SSEZ?]
PCMPGTD xmm1,xmm2/m128 ;66 OF 66 /r [WILLAMETTE,SSEZ?]

The PCMPxxinstructions all treat their operands as vectors of bytes, words, or doublewords;
corresponding elements of the source and destination are compared, and the corresponding
element of the destination (first) operand is set to all zeros or all ones depending on the result
of the comparison.

» PCMPxxBtreats the operands as vectors of bytes;

* PCMPxxWreats the operands as vectors of words;

91

PCMPxxDireats the operands as vectors of doublewords;

 PCMPEQsets the corresponding element of the destination operand to all ones if the two
elements compared are equal;

» PCMPGT:sets the destination element to all ones if the element of the first (destination)
operand is greater (treated as a signed integer) than that of the second (source) operand.

A.5.208 PDISTIB: MMX Packed Distance and Accumulate with Implied
Register

PDISTIB mm,m64 ; OF 54 /r [CYRIX,MMX]

PDISTIB , specific to the Cyrix MMX extensions, treats its two input operands as vectors of
eight unsigned bytes. For each byte position, it finds the absolute difference between the bytes
in that position in the two input operands, and adds that value to the byte in the same position
in the implied output register. The addition is saturated to an unsigned byte in the same way as
PADDUSB

To work out the implied register, invert the lowest bit in the register number. So
PDISTIB MMO0,M64 would put the result iMM1 but PDISTIB MM1,M64 would put the
result inMMO

Note thatPDISTIB cannot take a register as its second source operand.
Operation:

dstl[0-7] :=dstl[0-7] + ABS(srcO[0-7] - srcl1[0-7]),
dstl[8-15] :=dstl[8-15] + ABS(src0[8-15] - src1[8-15]),

dstl[56-63] := dstl[56-63] + ABS(src0[56-63] - src1[56-63]).
A.5.209 PEXTRWEXxtract Word

PEXTRW reg32,mm,imm8 ;OFC5/rib [KATMAI,MMX]
PEXTRW reg32,xmm,imm8 ; 66 OF C5 /rib [WILLAMETTE,SSEZ2]

PEXTRWhoves the word in the source register (second operand) that is pointed to by the count
operand (third operand), into the lower half of a 32-bit general purpose register. The upper half
of the register is cleared to all Os.

When the source operand is BiMXegister, the two least significant bits of the count specify
the source word. When it is @SE register, the three least significant bits specify the word

location.
A.5.210 PF2ID: Packed Single-Precision FP to Integer Convert
PF2ID mm1,mm2/m64 ; OF OF /r 1D [PENT,3DNOW]

PF2ID converts two single-precision FP values in the source operand to signed 32-bit integers,
using truncation, and stores them in the destination operand. Source values that are outside the
range supported by the destination are saturated to the largest absolute value of the same sign.

92

A.5.211

A.5.212

A.5.213

A.5.214

A.5.215

PF2IW: Packed Single-Precision FP to Integer Word Convert
PF2IW mm1,mm2/m64 ; OF OF /r 1C [PENT,3DNOW]

PF2IW converts two single-precision FP values in the source operand to signed 16-bit integers,
using truncation, and stores them in the destination operand. Source values that are outside the
range supported by the destination are saturated to the largest absolute value of the same sign.

* Inthe K6-2 and K6-l11, the 16-bit value is zero-extended to 32-bits before storing.

* Inthe K6-2+, K6-1l1+ and Athlon processors, the value is sign-extended to 32-bits before

storing.
PFACC Packed Single-Precision FP Accumulate
PFACC mm1,mm2/m64 ; OF OF /r AE [PENT,3DNOW]

PFACCadds the two single-precision FP values from the destination operand together, then
adds the two single-precision FP values from the source operand, and places the results in the
low and high doublewords of the destination operand.

The operation is:

dst[0-31] :=dst[0-31] + dst[32-63],
dst[32-63] := src[0-31] + src[32-63].

PFADD Packed Single-Precision FP Addition
PFADD mm1,mm2/m64 ; OF OF /r 9E [PENT,3DNOW]
PFADDperforms addition on each of two packed single-precision FP value pairs.

dst[0-31] :=dst[0-31] + src[0-31],
dst[32-63] := dst[32-63] + src[32-63].

PFCMPxx Packed Single-Precision FP Compare

PFCMPEQ mm1,mm2/m64 ; OF OF /r BO [PENT,3DNOW]
PFCMPGE mm1,mm2/m64 ; OF OF /r 90 [PENT,3DNOW]
PFCMPGT mm1,mm2/m64 ; OF OF /r AO [PENT,3DNOW]

The PFCMPxxinstructions compare the packed single-point FP values in the source and
destination operands, and set the destination according to the result. If the condition is true, the
destination is set to all 1s, otherwise it's set to all Os.

« PFCMPEQests whether dst == src;
 PFCMPGEests whether dst >= src;
 PFCMPGTests whether dst > src.
PFMAX Packed Single-Precision FP Maximum
PFMAX mm1,mm2/m64 ; OF OF /r A4 [PENT,3DNOW]

PFMAXeturns the higher of each pair of single-precision FP values. If the higher value is zero,
it is returned as positive zero.

93

A.5.216

A.5.217

A.5.218

A.5.219

A.5.220

PFMIN: Packed Single-Precision FP Minimum
PFMIN mm1,mm2/m64 ; OF OF /r 94 [PENT,3DNOW]

PFMIN returns the lower of each pair of single-precision FP values. If the lower value is zero,
it is returned as positive zero.

PFMUL Packed Single-Precision FP Multiply
PFMUL mm1,mm2/m64 ; OF OF /r B4 [PENT,3DNOW]
PFMULreturns the product of each pair of single-precision FP values.

dst[0-31] :=dst[0-31] * src[0-31],
dst[32-63] := dst[32-63] * src[32-63].

PFNACCPacked Single-Precision FP Negative Accumulate
PFNACC mm1,mm2/m64 ; OF OF /r 8A [PENT,3DNOW]

PFNACerforms a negative accumulate of the two single-precision FP values in the source

and destination registers. The result of the accumulate from the destination register is stored in
the low doubleword of the destination, and the result of the source accumulate is stored in the
high doubleword of the destination register.

The operation is:

dst[0-31] := dst[0-31] - dst[32-63],
dst[32-63] := src[0-31] - src[32-63].

PFPNACCPacked Single-Precision FP Mixed Accumulate
PFPNACC mm1,mm2/mé4 ; OF OF /r 8E [PENT,3DNOW]

PFPNACOerforms a positive accumulate of the two single-precision FP values in the source
register and a negative accumulate of the destination register. The result of the accumulate from
the destination register is stored in the low doubleword of the destination, and the result of the
source accumulate is stored in the high doubleword of the destination register.

The operation is:

dst[0-31] := dst[0-31] - dst[32-63],
dst[32-63] := src[0-31] + src[32-63].

PFRCP Packed Single-Precision FP Reciprocal Approximation
PFRCP mm1,mm2/m64 ; OF OF /r 96 [PENT,3DNOW]

PFRCPperforms a low precision estimate of the reciprocal of the low-order single-precision
FP value in the source operand, storing the result in both halves of the destination register. The
result is accurate to 14 bits.

For higher precision reciprocals, this instruction should be followed by two more instructions:
PFRCPIT1 (section A.5.221) an®?FRCPIT2 (section A.5.221). This will result in a 24-bit
accuracy. For more details, see the AMD 3DNow! technology manual.

94

A.5.221

A.5.222

A.5.223

A.5.224

PFRCPIT1: Packed Single-Precision FP Reciprocal, First Iteration
Step

PFRCPIT1 mm1,mm2/m64 ; OF OF /r A6 [PENT,3DNOW]

PFRCPIT1 performs the first intermediate step in the calculation of the reciprocal of a single-
precision FP value. The first source valoen(1s the original value, and the second source value
(mm2/m64is the result of #FRCPinstruction.

For the final step in a reciprocal, returning the full 24-bit accuracy of a single-precision FP
value, se@®’FRCPIT2 (section A.5.222). For more details, see the AMD 3DNow! technology
manual.

PFRCPIT2: Packed Single-Precision FP Reciprocal/ Reciprocal
Square Root, Second Iteration Step

PFRCPIT2 mm1,mm2/m64 ; OF OF /r B6 [PENT,3DNOW]

PFRCPIT2 performs the second and final intermediate step in the calculation of a reciprocal or
reciprocal square root, refining the values returned byPfRiRCPandPFRSQRTinstructions,
respectively.

The first source valuenxfm) is the output of either BFRCPIT1 or aPFRSQIT1 instruction,
and the second source is the output of eitheRRRCPor thePFRSQRTnstruction. For more
details, see the AMD 3DNow! technology manual.

PFRSQIT1: Packed Single-Precision FP Reciprocal Square Root, First
Iteration Step

PFRSQIT1 mm1,mm2/m64 ; OF OF /r A7 [PENT,3DNOW]

PFRSQIT1performs the firstintermediate step in the calculation of the reciprocal square root of
a single-precision FP value. The first source valam(lis the square of the result oPEFRSQRT
instruction, and the second source valome(2/m64is the original value.

For the final step in a calculation, returning the full 24-bit accuracy of a single-precision FP
value, sed®’FRCPIT2 (section A.5.222). For more details, see the AMD 3DNow! technology
manual.

PFRSQRT Packed Single-Precision FP Reciprocal Square Root
Approximation

PFRSQRT mm1,mm2/m64 ; OF OF /r 97 [PENT,3DNOW]

PFRSQRTperforms a low precision estimate of the reciprocal square root of the low-order
single-precision FP value in the source operand, storing the result in both halves of the
destination register. The result is accurate to 15 bits.

For higher precision reciprocals, this instruction should be followed by two more instructions:
PFRSQIT1 (section A.5.223) an®FRCPIT2 (section A.5.221). This will result in a 24-bit
accuracy. For more details, see the AMD 3DNow! technology manual.

95

A.5.225

A.5.226

A.5.227

A.5.228

A.5.229

A.5.230

PFSUB Packed Single-Precision FP Subtract
PFSUB mm1,mm2/m64 ; OF OF /r 9A [PENT,3DNOW]

PFSUBsubtracts the single-precision FP values in the source from those in the destination, and
stores the result in the destination operand.

dst[0-31] :=dst[0-31] - src[0-31],
dst[32-63] := dst[32-63] - src[32-63].

PFSUBR Packed Single-Precision FP Reverse Subtract
PFSUBR mm1,mm2/m64 : OF OF /r AA [PENT,3DNOW]

PFSUBRsubtracts the single-precision FP values in the destination from those in the source,
and stores the result in the destination operand.

dst[0-31] :=src[0-31] - dst[0-31],
dst[32-63] := src[32-63] - dst[32-63].

PI12FD : Packed Doubleword Integer to Single-Precision FP Convert
PI2FD mm1,mm2/m64 ; OF OF /r OD [PENT,3DNOW]

PF2ID converts two signed 32-bit integers in the source operand to single-precision FP values,
using truncation of significant digits, and stores them in the destination operand.

PI2FW: Packed Word Integer to Single-Precision FP Convert
PI2FW mm1,mm2/m64 :OF OF /r OC [PENT,3DNOW]

PI2FW converts two signed 16-bit integers in the source operand to single-precision FP values,
and stores them in the destination operand. The input values are in the low word of each
doubleword.

PINSRW Insert Word

PINSRW mm,r16/r32/m16,imm8 ;0F C4/rib [KATMAI,MMX]
PINSRW xmm,r16/r32/m16,imm8 ;66 OF C4 /rib [WILLAMETTE,SSEZ?]

PINSRWIloads a word from a 16-bit register (or the low half of a 32-bit register), or from
memory, and loads it to the word position in the destination register, pointed at by the count
operand (third operand). If the destination i\ Xegister, the low two bits of the count byte

are used, if it is alKMMegister the low 3 bits are used. The insertion is done in such a way that
the other words from the destination register are left untouched.

PMACHRIWPacked Multiply and Accumulate with Rounding
PMACHRIW mm,m64 ; OF 5E /r [CYRIX,MMX]

PMACHRIWakes two packed 16-bit integer inputs, multiplies the values in the inputs, rounds
on bit 15 of each result, then adds bits 15-30 of each result to the corresponding position of the
implieddestination register.

96

A.5.231

A.5.232

A.5.233

The operation of this instruction is:

dstl[0-15] := dstl[0-15] + (mm[0-15] *m64[0-15]
+ 0x00004000)[15-30],
dstl[16-31] := dstl[16-31] + (MM[16-31]*M64[16-31]
+ 0x00004000)[15-30],
dstl[32-47] := dstl[32-47] + (MM[32-47]*M64[32-47]
+ 0x00004000)[15-30],
dstl[48-63] := dstl[48-63] + (MmM[48-63]*M64[48-63]
+ 0x00004000)[15-30].

Note thatPMACHRIWannot take a register as its second source operand.

PMADDWMMX Packed Multiply and Add

PMADDWD mm1,mm2/m64 ;OF F5 /r [PENT,MMX]
PMADDWD xmm1,xmm2/m128 ;66 OF F5/r [WILLAMETTE,SSEZ?]

PMADDWikeats its two inputs as vectors of signed words. It multiplies corresponding elements
of the two operands, giving doubleword results. These are then added together in pairs and stored
in the destination operand.

The operation of this instruction is:

dst[0-31] := (dst[0-15] * src[0-15])

+ (dst[16-31] * src[16-31]);
dst[32-63] := (dst[32-47] * src[32-47])

+ (dst[48-63] * src[48-63));

The following apply to thesSEversion of the instruction:
dst[64-95] := (dst[64-79] * src[64-79])
+ (dst[80-95] * src[80-95]);
dst[96-127] := (dst[96-111] * src[96-111])
+ (dst[112-127] * src[112-127]).
PMAGYWMX Packed Magnitude
PMAGW mm1,mm2/m64 ; OF 52 /r [CYRIX,MMX]

PMAGV¢pecific to the Cyrix MMX extensions, treats both its operands as vectors of four signed
words. It compares the absolute values of the words in corresponding positions, and sets each
word of the destination (first) operand to whichever of the two words in that position had the
larger absolute value.

PMAXSWPacked Signed Integer Word Maximum

PMAXSW mm1,mm2/m64 , OF EE /r [KATMAIL,MMX]
PMAXSW xmm1,xmm2/m128 , 66 OF EE/r [WILLAMETTE,SSE?]

PMAXSWompares each pair of words in the two source operands, and for each pair it stores
the maximum value in the destination register.

97

A.5.234

A.5.235

A.5.236

A.5.237

A.5.238

PMAXUBPacked Unsigned Integer Byte Maximum

PMAXUB mm1,mm2/m64 ; OF DE /r [KATMAI,MMX]
PMAXUB xmm1,xmm2/m128 ;66 OF DE/r [WILLAMETTE,SSEZ?]

PMAXURBompares each pair of bytes in the two source operands, and for each pair it stores the
maximum value in the destination register.

PMINSWPacked Signed Integer Word Minimum

PMINSW mm1,mm2/m64 ; OF EAIr [KATMAI,MMX]
PMINSW xmm1,xmm2/m128 ; 66 OF EA/r [WILLAMETTE,SSEZ?]

PMINSWeompares each pair of words in the two source operands, and for each pair it stores
the minimum value in the destination register.

PMINUB Packed Unsigned Integer Byte Minimum

PMINUB mm1,mm2/m64 ; OF DA Ir [KATMAIL,MMX]
PMINUB xmm1,xmm2/m128 ;66 OF DA /r [WILLAMETTE,SSEZ?]

PMINUBcompares each pair of bytes in the two source operands, and for each pair it stores the
minimum value in the destination register.

PMOVMSKB/Aove Byte Mask To Integer

PMOVMSKB reg32,mm ; OF D7 Ir [KATMAI,MMX]
PMOVMSKB reg32,xmm ;66 OF D7 /r [WILLAMETTE,SSEZ?]

PMOVMSKEturns an 8-bit or 16-bit mask formed of the most significant bits of each byte of
source operand (8-bits for MMXegister, 16-bits for akMMegister).

PMULHRWC PMULHRIW Multiply Packed 16-bit Integers With
Rounding, and Store High Word

PMULHRWC mm1,mm2/m64 ; OF 59 /r [CYRIX,MMX]
PMULHRIW mm1,mm2/m64 ; OF 5D /r [CYRIX,MMX]

These instructions take two packed 16-bit integer inputs, multiply the values in the inputs, round
on bit 15 of each result, then store bits 15-30 of each result to the corresponding position of the
destination register.

* ForPMULHRW#®@he destination is the first source operand.

* For PMULHRIWthe destination is an implied register (worked out as described for
PADDSIWsection A.5.200)).

The operation of this instruction is:
dst[0-15] := (srcl[0-15] *src2[0-15] + 0x00004000)[15-30]
dst[16-31] := (src1[16-31]*src2[16-31] + 0x00004000)[15-30]

dst[32-47] := (src1[32-47]*src2[32-47] + 0x00004000)[15-30]
dst[48-63] := (src1[48-63]*src2[48-63] + 0x00004000)[15-30]

See als®MULHRW&ection A.5.239) for a 3DNow! version of this instruction.

98

A.5.239

A.5.240

A.5.241

A.5.242

PMULHRWAMultiply Packed 16-bit Integers With Rounding, and Store
High Word

PMULHRWA mm1,mm2/m64 ; OF OF /r B7 [PENT,3DNOW]

PMULHRW®akes two packed 16-bit integer inputs, multiplies the values in the inputs, rounds
on bit 16 of each result, then stores bits 16-31 of each result to the corresponding position of
the destination register.

The operation of this instruction is:

dst[0-15] := (src1[0-15] *src2[0-15] + 0x00008000)[16-31];

dst[16-31] := (src1[16-31]*src2[16-31] + 0x00008000)[16-31];
dst[32-47] := (src1[32-47]*src2[32-47] + 0x00008000)[16-31];
dst[48-63] := (src1[48-63]*src2[48-63] + 0x00008000)[16-31].

See als®MULHRW(@Gection A.5.238) for a Cyrix version of this instruction.
PMULHUWMultiply Packed 16-bit Integers, and Store High Word

PMULHUW mm1,mm2/m64 ; OF E4 Ir [KATMAI,MMX]
PMULHUW xmm1,xmm2/m128 ;66 OF E4 /r [WILLAMETTE,SSEZ]

PMULHU\dkes two packed unsigned 16-bit integer inputs, multiplies the values in the inputs,
then stores bits 16-31 of each result to the corresponding position of the destination register.

PMULHWPMULLWMultiply Packed 16-bit Integers, and Store

PMULHW mm1,mm2/m64 ; OF ES /r [PENT,MMX]
PMULLW mm1,mm2/m64 ; OF D5 /r [PENT,MMX]
PMULHW xmm1,xmm2/m128 ;66 OF ES/r [WILLAMETTE,SSEZ?]
PMULLW xmm1,xmm2/m128 ;66 OF D5 /r [WILLAMETTE,SSEZ2]

PMULxWakes two packed unsigned 16-bit integer inputs, and multiplies the values in the inputs,
forming doubleword results.

PMULHWhen stores the top 16 bits of each doubleword in the destination (first) operand;
* PMULLVgtores the bottom 16 bits of each doubleword in the destination operand.

PMULUDMultiply Packed Unsigned 32-bit Integers, and Store.

PMULUDQ mm1,mm2/m64 ; OF F4 Ir [WILLAMETTE,SSEZ?]
PMULUDQ xmm1,xmm2/m128 ;66 OF F4 /r [WILLAMETTE,SSEZ2]

PMULUDQ@akes two packed unsigned 32-bit integer inputs, and multiplies the values in the
inputs, forming quadword results. The source is either an unsigned doubleword in the low
doubleword of a 64-bit operand, or it's two unsigned doublewords in the first and third

doublewords of a 128-bit operand. This produces either one or two 64-bit results, which are
stored in the respective quadword locations of the destination register.

The operation is:
dst[0-63] :=dst[0-31] * src[0-31];
dst[64-127] := dst[64-95] * src[64-95].

99

A.5.243

A.5.244

PMVccZB MMX Packed Conditional Move

PMVZB mmxreg,mem64 ; OF 58 /Ir [CYRIX,MMX]
PMVNZB mmxreg,mem64 :OF BA Ir [CYRIX,MMX]
PMVLZB mmxreg,mem64 : OF 5B /r [CYRIX,MMX]
PMVGEZB mmxreg,mem64 ; OF 5C Ir [CYRIX,MMX]

These instructions, specific to the Cyrix MMX extensions, perform parallel conditional moves.
The two input operands are treated as vectors of eight bytes. Each byte of the destination (first)
operand is either written from the corresponding byte of the source (second) operand, or left
alone, depending on the value of the byte inithpliedoperand (specified in the same way as
PADDSIWin section A.5.200).

* PMVZBperforms each move if the corresponding byte in the implied operand is zero;
 PMVNZBnoves if the byte is non-zero;

* PMVLZBmoves if the byte is less than zero;

« PMVGEZBnoves if the byte is greater than or equal to zero.

Note that these instructions cannot take a register as their second source operand.

POPR Pop Data from Stack

POP regl6 ; 016 58+r [8086]

POP reg32 ; 032 58+r [386]

POP r/m16 ; 016 8F /0 [8086]

POP r/m32 ; 032 8F /0 [386]

POP CS ; OF [8086,UNDOC]
POP DS 1F [8086]

POP ES ; 07 [8086]

POP SS ;17 [8086]

POP FS ; OF Al [386]

POP GS ; OF A9 [386]

POPoads a value from the stack (frd®8S:SP] or[SS:ESP]) and then increments the stack
pointer.

The address-size attribute of the instruction determines wh8ter ESPis used as the stack
pointer: to deliberately override the default given by BigS setting, you can use ai6 or
a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointeris incremented
by 2 or 4: this means that segment register poBITFS 32 mode will pop 4 bytes off the

stack and discard the upper two of them. If you need to override that, you can 046 am

032 prefix.

The above opcode listings give two forms for general-purpose register pop instructions: for
examplePOP BXhas the two form&B and8F C3. NASM will always generate the shorter
form when giverPOP BXNDISASM will disassemble both.

POP CSs not a documented instruction, and is not supported on any processor above the 8086

100

(since they us@Fh as an opcode prefix for instruction set extensions). However, at least some
8086 processors do support it, and so NASM generates it for completeness. Current versions of
NASM silently accept this instruction.

A.5.245 POPAXx Pop All General-Purpose Registers

POPA 61 [186]
POPAW © 016 61 [186]
POPAD £ 032 61 [386]

« POPAWops a word from the stack into each of, successiv@ly,SI , BP, nothing (it
discards a word from the stack which was a placeholdeBR)r BX, DX CXandAX Itis
intended to reverse the operatioR\SHA&ee section A.5.264), but itignores the value
for SPthat was pushed on the stack BYSHAW

» POPADpops twice as much data, and places the resultSDh, ESI, EBP, nothing
(placeholder foESP), EBX EDX ECXandEAX It reverses the operation BUSHAD

POPASs an alias mnemonic for eithBlOPAWr POPADdepending on the curreBtTS setting.

Note that the registers are popped in reverse order of their numeric values in opcodes (see section

A.2.1).

A.5.246 POPFx Pop Flags Register
POPF ; 9D [8086]
POPFW : 016 9D [8086]
POPFD © 032 9D [386]

POPFWops a word from the stack and stores it in the bottom 16 bits of the flags register
(or the whole flags register, on processors below a 386).

* POPFDpops a doubleword and stores it in the entire flags register.
POPHs an alias mnemonic for eithBIOPFVér POPFDdepending on the curreBtTS setting.
See alsd®USHHsection A.5.265).

A.5.247 POR MMX Bitwise OR

POR mm1,mm2/m64 ;OFEB/r [PENT,MMX]
POR xmm1,xmm2/m128 ;66 OF EB/r [WILLAMETTE,SSEZ2]

PORperforms a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if
and only if at least one of the corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.

A.5.248 PREFETCHPrefetch Data Into Caches

PREFETCH mem8 ;OF 0D /0 [PENT,3DNOW]
PREFETCHW mem8 ;OF 0D /1 [PENT,3DNOW]

PREFETCHandPREFETCHWetch the line of data from memory that contains the specified
byte. PREFETCH\fferforms differently on the Athlon to earlier processors.

For more details, see the 3DNow! Technology Manual.

101

A.5.249 PREFETCHhPrefetch Data Into Caches

PREFETCHNTA m8 ; OF 18 /0 [KATMAI]
PREFETCHTO m8 ; OF 18 /1 [KATMAI]
PREFETCHT1 m8 ; OF 18 /2 [KATMAI]
PREFETCHT2 m8 ; OF 18 /3 [KATMAI]

The PREFETCHhnstructions fetch the line of data from memory that contains the specified
byte. It is placed in the cache according to rules specified by locality hints

The hints are:
* TO (temporal data) - prefetch data into all levels of the cache hierarchy.

* T1 (temporal data with respect to first level cache) - prefetch data into level 2 cache and
higher.

* T2 (temporal data with respect to second level cache) - prefetch data into level 2 cache and
higher.

* NTA(non-temporal data with respect to all cache levels) - prefetch data into non-temporal
cache structure and into a location close to the processor, minimizing cache pollution.

Note that this group of instructions doesn't provide a guarantee that the data will be in the cache
when it is needed. For more details, see the Intel IA32 Software Developer Manual, Volume 2.

A.5.250 PSADBWPacked Sum of Absolute Differences

PSADBW mm1,mm2/m64 ; OF F6 Ir [KATMAI,MMX]
PSADBW xmm1,xmm2/m128 ;66 OF F6 /r [WILLAMETTE,SSEZ?]

PSADBWhe PSADBW instruction computes the absolute value of the difference of the packed
unsigned bytes in the two source operands. These differences are then summed to produce aword
result in the lower 16-bit field of the destination register; the rest of the register is cleared. The
destination operand is aiMXor anXMMegister. The source operand can either be a register

or a memory operand.

A.5.251 PSHUFDShuffle Packed Doublewords
PSHUFD xmm1,xmm2/m128,imm8 ;66 OF 70 /r ib [WILLAMETTE,SSE2]

PSHUFDshuffles the doublewords in the source (second) operand according to the encoding
specified by imm8, and stores the result in the destination (first) operand.

Bits 0 and 1 of imm8 encode the source position of the doubleword to be copied to position 0 in
the destination operand. Bits 2 and 3 encode for position 1, bits 4 and 5 encode for position 2,
and bits 6 and 7 encode for position 3. For example, an encoding of 10 in bits 0 and 1 of imm8
indicates that the doubleword at bits 64-95 of the source operand will be copied to bits 0-31 of
the destination.

A.5.252 PSHUFHWShuffle Packed High Words
PSHUFHW xmm1,xmm2/m128,imm8 ; F3 OF 70 /r ib [WILLAMETTE,SSEZ2]

PSHUFVghuffles the words in the high quadword of the source (second) operand according to

102

A.5.253

A.5.254

A.5.255

the encoding specified by imm8, and stores the result in the high quadword of the destination
(first) operand.

The operation of this instruction is similar to tRSHUFWhstruction, except that the source
and destination are the top quadword of a 128-bit operand, instead of being 64-bit operands.
The low quadword is copied from the source to the destination without any changes.

PSHUFLWShuffle Packed Low Words
PSHUFLW xmm1,xmm2/m128,imm8 ; F2 OF 70 /rib [WILLAMETTE,SSEZ]

PSHUFLVghuffles the words in the low quadword of the source (second) operand according to
the encoding specified by imm8, and stores the result in the low quadword of the destination
(first) operand.

The operation of this instruction is similar to tRSHUFWhstruction, except that the source
and destination are the low quadword of a 128-bit operand, instead of being 64-bit operands.
The high quadword is copied from the source to the destination without any changes.

PSHUFWShuffle Packed Words
PSHUFW mm1,mm2/m64,imm8 ;OF 70 /rib [KATMAILLMMX]

PSHUFW8huffles the words in the source (second) operand according to the encoding specified
by imm8, and stores the result in the destination (first) operand.

Bits 0 and 1 of imm8 encode the source position of the word to be copied to position 0 in the
destination operand. Bits 2 and 3 encode for position 1, bits 4 and 5 encode for position 2, and
bits 6 and 7 encode for position 3. For example, an encoding of 10 in bits 0 and 1 of imm8
indicates that the word at bits 32-47 of the source operand will be copied to bits 0-15 of the
destination.

PSLLx: Packed Data Bit Shift Left Logical

PSLLW mm1,mm2/m64 ;OF F1 /r [PENT,MMX]
PSLLW mm,imm8 ;OF 71 /6 ib [PENT,MMX]

PSLLW xmm1,xmm2/m128 ;66 OF F1/r [WILLAMETTE,SSEZ?]
PSLLW xmm,imm8 ;66 OF 71 /6 ib [WILLAMETTE,SSEZ?]
PSLLD mm1,mm2/m64 ;OF F2 Ir [PENT,MMX]

PSLLD mm,imm8 ;OF 72 /6 ib [PENT,MMX]

PSLLD xmm1,xmm2/m128 ;66 OF F2 /r [WILLAMETTE,SSEZ2]
PSLLD xmm,imm8 ;66 OF 72 /6 ib [WILLAMETTE,SSEZ?]
PSLLQ mm1,mm2/m64 ; OF F3 /Ir [PENT,MMX]

PSLLQ mm,imm8 ; OF 73 /6 ib [PENT,MMX]

PSLLQ xmm1,xmm2/m128 ;66 OF F3/r [WILLAMETTE,SSEZ?]
PSLLQ xmm,imm8 ; 66 OF 73 /6 ib [WILLAMETTE,SSEZ?]
PSLLDQ xmm1,imm8 ;66 OF 73 /7 ib [WILLAMETTE,SSEZ?]

PSLLx performs logical left shifts of the data elements in the destination (first) operand, moving

103

A.5.256

A.5.257

each bit in the separate elements left by the number of bits specified in the source (second)
operand, clearing the low-order bits as they are vac&8tLDQshifts bytes, not bits.

 PSLLWshifts word sized elements.
* PSLLDshifts doubleword sized elements.
* PSLLQshifts quadword sized elements.

» PSLLDQshifts double quadword sized elements.
PSRAXx Packed Data Bit Shift Right Arithmetic

PSRAW mm1,mm2/m64 ; OF E1 /r [PENT,MMX]
PSRAW mm,imm8 ;OF 71 /4 ib [PENT,MMX]

PSRAW xmm1,xmm2/m128 ;66 OF E1 /r [WILLAMETTE,SSEZ]
PSRAW xmm,imm8 ;66 OF 71 /4 ib [WILLAMETTE,SSEZ?]
PSRAD mml1,mm2/m64 ; OF E2 Ir [PENT,MMX]

PSRAD mm,imm38 ;OF 72 /4 ib [PENT,MMX]

PSRAD xmm1,xmm2/m128 ;66 OF E2/r [WILLAMETTE,SSEZ?]
PSRAD xmm,imm8 ; 66 OF 72 /4 ib [WILLAMETTE,SSEZ?]

PSRAXxperforms arithmetic right shifts of the data elements in the destination (first) operand,
moving each bit in the separate elements right by the number of bits specified in the source
(second) operand, setting the high-order bits to the value of the original sign bit.

« PSRAWhiIfts word sized elements.
« PSRADshifts doubleword sized elements.

PSRLx Packed Data Bit Shift Right Logical

PSRLW mm1,mm2/m64 ;OFD1/r [PENT,MMX]
PSRLW mm,imm8 ;OF 71 /2ib [PENT,MMX]

PSRLW xmm1,xmm2/m128 ;66 OF D1 /r [WILLAMETTE,SSEZ2]
PSRLW xmm,imm8 ;66 OF 71 /2 ib [WILLAMETTE,SSEZ?]
PSRLD mm1,mm2/m64 ; OF D2 /r [PENT,MMX]

PSRLD mm,imm8 ;OF 72 /2 ib [PENT,MMX]

PSRLD xmm1,xmm2/m128 ;66 OF D2 /r [WILLAMETTE,SSEZ?]
PSRLD xmm,imm8 ;66 OF 72 /2 ib [WILLAMETTE,SSEZ2]
PSRLQ mm1,mm2/m64 ; OF D3 /r [PENT,MMX]

PSRLQ mm,imm8 ; OF 73 /2ib [PENT,MMX]

PSRLQ xmm1,xmm2/m128 ;66 OF D3 /r [WILLAMETTE,SSEZ2]
PSRLQ xmm,imm8 ; 66 OF 73 /2 ib [WILLAMETTE,SSEZ?]
PSRLDQ xmm1,imm8 ; 66 OF 73 /3 ib [WILLAMETTE,SSEZ?]

PSRLx performs logical right shifts of the data elements in the destination (first) operand,
moving each bit in the separate elements right by the number of bits specified in the source

104

A.5.258

A.5.259

(second) operand, clearing the high-order bits as they are vaé¥#&d.D(shifts bytes, not
bits.

* PSRLWshifts word sized elements.

* PSRLDshifts doubleword sized elements.

* PSRLQshifts quadword sized elements.

» PSRLDshifts double quadword sized elements.

PSUBXx Subtract Packed Integers

PSUBB mm1,mm2/m64 ; OF F8 Ir [PENT,MMX]

PSUBW mm1,mm2/m64 s OF F9 Ir [PENT,MMX]

PSUBD mml1,mm2/m64 ; OF FA Ir [PENT,MMX]

PSUBQ mm1,mm2/m64 ; OF FB /r [WILLAMETTE,SSEZ?]
PSUBB xmm1,xmm2/m128 ;66 OF F8 /r [WILLAMETTE,SSEZ2]
PSUBW xmm1,xmm2/m128 ;66 OF F9 /r [WILLAMETTE,SSEZ?]
PSUBD xmm1,xmm2/m128 ; 66 OF FA/r [WILLAMETTE,SSEZ?]
PSUBQ xmm1,xmm2/m128 ;66 OF FB /r [WILLAMETTE,SSEZ?]

PSUBXxsubtracts packed integers in the source operand from those in the destination operand.
It doesn't differentiate between signed and unsigned integers, and doesn't set any of the flags.

» PSUBBoperates on byte sized elements.
* PSUBVWperates on word sized elements.
» PSUBDoperates on doubleword sized elements.

* PSUBQperates on quadword sized elements.

PSUBSxx PSUBUSx Subtract Packed Integers With Saturation

PSUBSB mm1,mm2/m64 ; OF E8 Ir [PENT,MMX]
PSUBSW mm1,mm2/m64 ; OF E9 /r [PENT,MMX]
PSUBSB xmm1,xmm2/m128 ;66 OF E8 Ir [WILLAMETTE,SSEZ?]
PSUBSW xmm1,xmm2/m128 ;66 OF E9Q /Ir [WILLAMETTE,SSEZ2]
PSUBUSB mm1,mm2/m64 ; OF D8 Ir [PENT,MMX]
PSUBUSW mm1,mm2/m64 ; OF D9 /r [PENT,MMX]
PSUBUSB xmm1,xmm2/m128 ;66 OF D8 /r [WILLAMETTE,SSEZ?]
PSUBUSW xmm1,xmm2/m128 ;66 OF D9 /r [WILLAMETTE,SSEZ?]

PSUBSxand PSUBUSxsubtracts packed integers in the source operand from those in the
destination operand, and use saturation for results that are outside the range supported by the
destination operand.

» PSUBSBoperates on signed bytes, and uses signed saturation on the results.

* PSUBSWperates on signed words, and uses signed saturation on the results.

105

 PSUBUSBperates on unsigned bytes, and uses signed saturation on the results.

* PSUBUSWperates on unsigned words, and uses signed saturation on the results.

A.5.260 PSUBSIW MMX Packed Subtract with Saturation to Implied
Destination

PSUBSIW mm1,mm2/m64 ; OF 55 /r [CYRIX,MMX]

PSUBSIW specific to the Cyrix extensions to the MMX instruction set, performs the same
function asPSUBSWexcept that the result is not placed in the register specified by the first
operand, but instead in the implied destination register, specified &ADDSIW(section
A.5.200).

A.5.261 PSWAPDSwap Packed Data
PSWAPD mm1,mm2/m64 ;OF OF /rBB [PENT,3DNOW]

PSWAPDBwaps the packed doublewords in the source operand, and stores the result in the
destination operand.

In theK6-2 andK6-Ill processors, this opcode uses the mnemB&EWAPWANd it swaps
the order of words when copying from the source to the destination.

The operation in th&6-2 andK6-Ill processors is
dst[0-15] = src[48-63];
dst[16-31] = src[32-47];
dst[32-47] = src[16-31];
dst[48-63] = src[0-15].
The operation in th&6-x+ , ATHLONand later processors is:

dst[0-31] = src[32-63];
dst[32-63] = src[0-31].

A.5.262 PUNPCKXxxx Unpack and Interleave Data

PUNPCKHBW mm1,mm2/m64 ; OF 68 /r [PENT,MMX]
PUNPCKHWD mm1,mm2/m64 ; OF 69 /r [PENT,MMX]
PUNPCKHDQ mm1,mm2/m64 ; OF 6A Ir [PENT,MMX]

PUNPCKHBW xmm1,xmm2/m128 ;66 OF 68 /r [WILLAMETTE,SSEZ?]
PUNPCKHWD xmm1,xmm2/m128 ;66 OF 69 /r [WILLAMETTE,SSEZ2]
PUNPCKHDQ xmm1,xmm2/m128 ;66 OF 6A/r [WILLAMETTE,SSEZ?]
PUNPCKHQDQ xmm1,xmm2/m128 ;66 OF 6D /r [WILLAMETTE,SSEZ2]

PUNPCKLBW mm1,mm2/m32 ; OF 60 /r [PENT,MMX]
PUNPCKLWD mm1,mm2/m32 ; OF 61 /r [PENT,MMX]
PUNPCKLDQ mm1,mm2/m32 ; OF 62 /r [PENT,MMX]

PUNPCKLBW xmm1,xmm2/m128 ;66 OF60/r [WILLAMETTE,SSEZ2]
PUNPCKLWD xmm1,xmm2/m128 ;66 OF 61/r [WILLAMETTE,SSEZ?]

106

A.5.263

PUNPCKLDQ xmm1,xmm2/m128 ;66 OF 62 /r [WILLAMETTE,SSEZ?]
PUNPCKLQDQ xmm1,xmm2/m128 ;66 OF 6C/r [WILLAMETTE,SSEZ?]

PUNPCKxxall treat their operands as vectors, and produce a new vector generated by
interleaving elements from the two inputs. TRENP CKHxxnstructions start by throwing away

the bottom half of each input operand, and BHgNPCKLxxinstructions throw away the top

half.

The remaining elements, are then interleaved into the destination, alternating elements from the
second (source) operand and the first (destination) operand: so the leftmost part of each element
in the result always comes from the second operand, and the rightmost from the destination.

 PUNPCKxBWorks a byte at a time, producing word sized output elements.
* PUNPCKxWirorks a word at a time, producing doubleword sized output elements.
» PUNPCKxD@orks a doubleword at a time, producing quadword sized output elements.

* PUNPCKxQD@orks a quadword at a time, producing double quadword sized output
elements.

So, for example, foMM>operands, if the first operand hél@7A6A5A4A3A2A1A0A and the
second held®x7B6B5B4B3B2B1B0B, then:

« PUNPCKHBWould returnOX7B7A6B6A5B5A4B4A.
PUNPCKHWRould returnOx7B6B7A6A5B4B5A4A.

» PUNPCKHD®@ould returnOx7B6B5B4B7A6A5A4A.
 PUNPCKLBWould returnOx3B3A2B2A1B1A0BOA.
* PUNPCKLW®ould returnOx3B2B3A2A1BOB1A0A.
 PUNPCKLD@ould returnOx3B2B1BOB3A2A1A0A.

PUSH Push Data on Stack

PUSH regl6 ; 016 50+r [8086]
PUSH reg32 ; 032 50+r [386]
PUSH r/m16 ; 016 FF /6 [8086]
PUSH r/m32 ; 032 FF /6 [386]
PUSH CS ; OE [8086]
PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS + 16 [8086]
PUSH FS ; OF AO [386]
PUSH GS : OF A8 [386]
PUSH imm8 :6A ib [186]
PUSH imm16 ; 016 68 iw [186]

PUSH imm32 - 032 68 id [386]

107

A.5.264

A.5.265

PUSHdecrements the stack point&K or ESP) by 2 or 4, and then stores the given value at
[SS:SP] or[SS:ESP] .

The address-size attribute of the instruction determines whgfher ESPis used as the stack
pointer: to deliberately override the default given by Bi&S setting, you can use ai6 or
a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is
decremented by 2 or 4: this means that segment register pudBEsSn32 mode will push 4

bytes on the stack, of which the upper two are undefined. If you need to override that, you can
use arnl6 oro32 prefix.

The above opcode listings give two forms for general-purpose register push instructions: for
examplePUSH BXhas the two form83 andFF F3. NASM will always generate the shorter
form when giverlPUSH BXNDISASM will disassemble both.

Unlike the undocumented and barely suppof€P CSPUSH CSs a perfectly valid and
sensible instruction, supported on all processors.

The instructiolPUSH SHRnay be used to distinguish an 8086 from later processors: on an 8086,
the value ofSP stored is the value it haafterthe push instruction, whereas on later processors
it is the valuebeforethe push instruction.

PUSHAX Push All General-Purpose Registers

PUSHA - 60 [186]
PUSHAD - 032 60 [386]
PUSHAW - 016 60 [186]

PUSHAWUushes, in successiofX, CX DX BX, SP, BP, SI andDI on the stack, decrementing
the stack pointer by a total of 16.

PUSHADpushes, in successioBAX ECX EDX EBX ESP, EBP, ESI andEDI on the stack,
decrementing the stack pointer by a total of 32.

In both cases, the value 8P or ESPpushed is it®riginal value, as it had before the instruction
was executed.

PUSHAis an alias mnemonic for eith®@USHAWr PUSHADdepending on the curreBITS
setting.

Note that the registers are pushed in order of their numeric values in opcodes (see section A.2.1).

See alsd®OPA(section A.5.245).
PUSHFx Push Flags Register

PUSHF - 9C [8086]
PUSHFD £ 032 9C [386]
PUSHFW £ 016 9C [8086]

 PUSHFWushes the bottom 16 bits of the flags register (or the whole flags register, on
processors below a 386) onto the stack.

* PUSHFDpushes the entire flags register onto the stack.

108

A.5.266

A.5.267

A.5.268

PUSHHs an alias mnemonic for eith®USHFVr PUSHFDdepending on the curreBITS
setting.

See alsd®OPF(section A.5.246).
PXOR MMX Bitwise XOR

PXOR mm1,mm2/m64 :OF EF /r [PENT,MMX]
PXOR xmm1,xmm2/m128 ;66 OF EF /r [WILLAMETTE,SSEZ2]

PXORperforms a bitwise XOR operation between its two operands (i.e. each bit of the result
is 1 if and only if exactly one of the corresponding bits of the two inputs was 1), and stores the
result in the destination (first) operand.

RCL, RCR Bitwise Rotate through Carry Bit

RCL r/m8,1 ; DO /2 [8086]
RCL r/m8,CL ; D2 /2 [8086]
RCL r/m8,imm8 ;C0/21ib [186]
RCL r/m16,1 ;016 D1 /2 [8086]
RCL r/m16,CL ; 016 D3 /2 [8086]
RCL r/m16,imm8 ;016 C1/21ib [186]
RCL r/m32,1 ;032 D1 /2 [386]
RCL r/m32,CL ;032 D3 /2 [386]
RCL r/m32,imm8 ;032C1/2ib [386]
RCR r/m8,1 ; DO /3 [8086]
RCR r/m8,CL ;D2 /3 [8086]
RCR r/m8,imm8 ; CO/3ib [186]
RCR r/m16,1 ;016 D1 /3 [8086]
RCR r/m16,CL ; 016 D3 /3 [8086]
RCR r/m16,imm8 ;016 C1/31ib [186]
RCR r/m32,1 ;032D1/3 [386]
RCR r/m32,CL ;032 D3 /3 [386]
RCR r/m32,imm8 ;032C1/31ib [386]

RCL and RCRperform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving the
given source/destination (first) operand and the carry bit. Thus, for example, in the operation
RCL AL,1, a 9-bit rotation is performed in whicAL is shifted left by 1, the top bit oAL

moves into the carry flag, and the original value of the carry flag is placed in the lowAit. of

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning wit@laor CO byte) form of
RCL foo,1 by using aBYTEprefix:RCL foo,BYTE 1 . Similarly with RCR

RCPPSPacked Single-Precision FP Reciprocal
RCPPS xmm1,xmm2/m128 ; OF 53 /r [KATMAI,SSE]

RCPPSeturns an approximation of the reciprocal of the packed single-precision FP values from
xmm2/m128. The maximum error for this approximation is: |Error| <= 1.5 x 2"-12

109

A.5.269

A.5.270

A.5.271

A.5.272

A.5.273

A.5.274

RCPSS Scalar Single-Precision FP Reciprocal
RCPSS xmm1,xmm2/m128 ; F30F 53 /r [KATMAI,SSE]

RCPSSeturns an approximation of the reciprocal of the lower single-precision FP value from
xmm2/m32; the upper three fields are passed through from xmmZ1. The maximum error for this
approximation is: |Error| <= 1.5 x 2"-12

RDMSRRead Model-Specific Registers
RDMSR ; OF 32 [PENT,PRIV]

RDMSReads the processor Model-Specific Register (MSR) whose index is stde€Xrand
stores the result iEDX:EAX See als®WRMSRsection A.5.329).

RDPMCRead Performance-Monitoring Counters
RDPMC : OF 33 [P6]

RDPM¢GEeads the processor performance-monitoring counter whose index is st&@ iand
stores the result iIEDX:EAX

This instruction is available on P6 and later processors and on MMX class processors.
RDSHRRead SMM Header Pointer Register
RDSHR r/m32 ; OF 36 /0 [386,CYRIX,SMM]

RDSHReads the contents of the SMM header pointer register and saves it to the destination
operand, which can be either a 32 bit memory location or a 32 bit register.

See alsoVRSHRsection A.5.330).

RDTSC Read Time-Stamp Counter

RDTSC : OF 31 [PENT]
RDTSQeads the processor's time-stamp counter HiX:EAX

RET, RETE RETN Return from Procedure Call

RET - C3 [8086]

RET imm16 - C2 iw [8086]
RETF ;. CB [8086]
RETF imm16 - CA iw [8086]
RETN - C3 [8086]
RETN imm16 - C2iw [8086]

* RET, and its exact synonyfRETN poplP or EIP from the stack and transfer control to
the new address. Optionally, if a numeric second operand is provided, they increment the
stack pointer by a furthemm16 bytes after popping the return address.

* RETFexecutes a far return: after poppitgy/EIP , it then popS andthenincrements
the stack pointer by the optional argument if present.

110

A.5.275

A.5.276

A.5.277

A.5.278

A.5.279

ROL ROR Bitwise Rotate

ROL r/m8,1 ;DO /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ;CO/0ib [186]
ROL r/m16,1 ;016 D1/0 [8086]
ROL r/m16,CL ;016 D3 /0 [8086]
ROL r/m16,imm8 ;016 C1/01ib [186]
ROL r/m32,1 ;032D1/0 [386]
ROL r/m32,CL ;032D3/0 [386]
ROL r/m32,imm8 ;032C1/01ib [386]
ROR r/m8,1 ; DO /1 [8086]
ROR r/m8,CL ;D271 [8086]
ROR r/m8,imm8 ;CO/1ib [186]
ROR r/m16,1 ;016 D1/1 [8086]
ROR r/m16,CL ;016 D3 /1 [8086]
ROR r/m16,imm8 ;016 C1l/1ib [186]
ROR r/m32,1 ;032D1/1 [386]
ROR r/m32,CL ;032 D3/1 [386]
ROR r/m32,imm8 ;032C1/1ib [386]

ROL and RORperform a bitwise rotation operation on the given source/destination (first)
operand. Thus, for example, inthe operafR@L AL,1, an 8-bitrotation is performed in which
AL is shifted left by 1 and the original top bit #fL moves round into the low bit.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning wit@laor CO byte) form of
ROL foo,1 by using aBYTEprefix:ROL foo,BYTE 1 . Similarly with ROR

RSDC Restore Segment Register and Descriptor

RSDC segreg,m80 ;OF 79 /Ir [486,CYRIX,SMM]

RSDGQestores asegmentregister (DS, ES, FS, GS, or SS) from mem80, and sets up its descriptor.
RSLDT. Restore Segment Register and Descriptor

RSLDT m80 ; OF 7B /0 [486,CYRIX,SMM]

RSLDTrestores the Local Descriptor Table (LDTR) from mem80.

RSM Resume from System-Management Mode

RSM . OF AA [PENT]

RSMreturns the processor to its normal operating mode when it was in System-Management
Mode.

RSQRTPSPacked Single-Precision FP Square Root Reciprocal
RSQRTPS xmm1,xmm2/m128 :OF 52 /r [KATMAI,SSE]

111

A.5.280

A.5.281

A.5.282

A.5.283

RSQRTPSomputes the approximate reciprocals of the square roots of the packed single-
precision floating-point values in the source and stores the results in xmmZ1. The maximum error
for this approximation is: |Error| <= 1.5 x 2"-12

RSQRTSSScalar Single-Precision FP Square Root Reciprocal
RSQRTSS xmm1,xmm2/m128 ;F30F52/r [KATMAI,SSE]

RSQRTSSeturns an approximation of the reciprocal of the square root of the lowest order
single-precision FP value from the source, and stores it in the low doubleword of the
destination register. The upper three fields of xmm1 are preserved. The maximum error for this
approximation is: |Error| <= 1.5 x 2*-12

RSTS Restore TSR and Descriptor

RSTS m80 'OF7D/0 [486,CYRIX,SMM]

RSTSrestores Task State Register (TSR) from mem80.

SAHE Store AH to Flags

SAHF ; 9E [8086]

SAHFsets the low byte of the flags word according to the contents cAHegister.
The operation oSAHFis:

AH --> SF:ZF:0:AF:0:PF:1.CF

See alsd.AHF (section A.5.131).

SAL, SAR Bitwise Arithmetic Shifts

SAL r/m8,1 ; DO /4 [8086]
SAL r/m8,CL ; D2 /4 [8086]
SAL r/m8,imm8 ;CO/M4ib [186]
SAL r/m16,1 ;016 D1 /4 [8086]
SAL r/m16,CL ; 016 D3 /4 [8086]
SAL r/m16,imm8 ;016 C1/41b [186]
SAL r/m32,1 ;032D1/4 [386]
SAL r/m32,CL ;032 D3 /4 [386]
SAL r/m32,imm8 ;032C1l/41b [386]
SAR r/m8,1 ; DO /7 [8086]
SAR r/m8,CL ;D2 /7 [8086]
SAR r/m8,imm8 ; CO/7ib [186]
SAR r/m16,1 ;016 D1 /7 [8086]
SAR r/m16,CL ; 016 D3 /7 [8086]
SAR r/m16,imm3 ;016 C1/71ib [186]
SAR r/m32,1 ;032 D1 /7 [386]
SAR r/m32,CL ;032 D3 /7 [386]
SAR r/m32,imm8 ;032C1/71ib [386]

SAL and SAR perform an arithmetic shift operation on the given source/destination (first)

112

A.5.284

A.5.285

operand. The vacated bits are filled with zero$#L, and with copies of the original high bit
of the source operand f@AR

SAL is a synonym folSHL (see section A.5.290). NASM will assemble either one to the same
code, but NDISASM will always disassemble that cod&kk.

The number of bits to shift by is given by the second operand. Only the bottom five bits of the
shift count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning witG@laor CO byte) form of
SAL foo,1 by using aBYTEprefix: SAL foo,BYTE 1 . Similarly with SAR

SALC Set AL from Carry Flag
SALC ' D6 [8086,UNDOC]

SALCis an early undocumented instruction similar in conceEJ cc (section A.5.287). Its
function is to sefAL to zero if the carry flag is clear, or faixFF if it is set.

SBB Subtract with Borrow

SBB r/m8,reg8 ;18 /r [8086]
SBB r/m16,regl6 ;016 19 /r [8086]
SBB r/m32,reg32 ;032 19 /r [386]
SBB reg8,r/m8 1A Ir [8086]
SBB reg16,r/m16 ;016 1B /r [8086]
SBB reg32,r/m32 ;032 1B Ir [386]
SBB r/m8,imm8 ;80 /3ib [8086]
SBB r/m16,imm16 ;016 81 /3 iw [8086]
SBB r/m32,imm32 ;03281 /3 id [386]
SBB r/m16,imm8 ;016 83 /3 ib [8086]
SBB r/m32,imm8 ;03283/31ib [386]
SBB AL,imm8 ;1C b [8086]
SBB AX,imm16 ; 016 1D iw [8086]
SBB EAX,imm32 ;032 1D id [386]

SBBperforms integer subtraction: it subtracts its second operand, plus the value of the carry flag,
from its first, and leaves the result in its destination (first) operand. The flags are set according to
the result of the operation: in particular, the carry flag is affected and can be used by a subsequent
SBBinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tI®TRICT WORDr STRICT DWORAQBualifier.

To subtract one number from another without also subtracting the contents of the carry flag, use
SUB(section A.5.305).

113

A.5.286 SCASB SCASWSCASD Scan String

SCASB - AE [8086]
SCASW - 016 AF [8086]
SCASD - 032 AF [386]

SCASBcompares the byte IAL with the byte a{ES:DI] or[ES:EDI] , and sets the flags
accordingly. It then increments or decrements (depending on the direction flag: increments if
the flag is clear, decrements if it is s€t) (or EDI).

The register used BI if the address size is 16 bits, aB®I if it is 32 bits. If you need to use an
address size not equal to the currBhES setting, you can use an explieil6 ora32 prefix.

Segment override prefixes have no effect for this instruction: the uES &dr the load from
[DI] or[EDI] cannotbe overridden.

SCASWand SCASDwork in the same way, but they compare a wordAdor a doubleword
to EAXinstead of a byte té\L, and increment or decrement the addressing registers by 2 or 4
instead of 1.

The REPEand REPNEprefixes (equivalentyREPZandREPNZ may be used to repeat the
instruction up taCX(or ECX- again, the address size chooses which) times until the first unequal
or equal element is found. To NASNREPIs an alias foREPE

A.5.286.1 Pseudo-code examples
alé SCASBand with Direction Flag clear (UP) is equal to

CMP AL, BYTE [ES:DI]
LEA DI, [DI + 1]

alé REPE SCASWInd with Direction Flag clear (UP) is equal to

JCXZ @FF

@@:

CMP AX, WORD [ES:DI]
LEA DI, [DI + 2]

alé LOOPE @B

@@:
a32 SCASDwith Direction Flag set (DN) is equal to

CMP EAX, DWORD [ES:EDI]
LEA EDI, [EDI - 4]

A.5.287 SETcc: Set Register from Condition

SETcc r/m8 ; OF 90+cc /2 [386]

SETcc sets the given 8-bit operand to zero if its condition is not satisfied, and to 1 if it is.
A.5.288 SFENCE Store Fence

SFENCE ; OF AE /7 [KATMAI]

SFENCHEperforms a serialising operation on all writes to memory that were issued before the

114

A.5.289

A.5.290

SFENCERstruction. This guarantees that all memory writes befor&#HENCENStruction are
visible before any writes after tfeFENCHEnNstruction.

SFENCHS ordered respective to oth8FENCEnNstruction, MFENCEany memory write and
any other serialising instruction (such@BUID).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, write-combining, and write-collapsing. The degree to
which a consumer of data recognizes or knows that the data is weakly ordered varies among
applications and may be unknown to the producer of this dataSIFE& CEnstruction provides

a performance-efficient way of insuring store ordering between routines that produce weakly-
ordered results and routines that consume this data.

SFENCEHuses the following ModR/M encoding:

Mod (7:6) =11B
Reg/Opcode (5:3) =111B
R/M (2:0) = 000B

All other ModR/M encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsd. FENCE(section A.5.137) anMFENCHEsection A.5.151).
SGDT SIDT, SLDT: Store Descriptor Table Pointers

SGDT mem - OF 01 /0 [286,PRIV]
SIDT mem ;OF 01 /1 [286,PRIV]
SLDT r/m16 ; OF 00 /0 [286,PRIV]

SGDTandSIDT both take a 6-byte memory area as an operand: they store the contents of the
GDTR (global descriptor table register) or IDTR (interrupt descriptor table register) as a 16-bit
size limit and a 32-bit linear address into that area (limit word first, then linear address dword).
The GDT and IDT instructions are the only instructions which directly lussar addresses,
rather than segment/offset pairs.

SLDT stores the segment selector corresponding to the LDT (local descriptor table) into the
given operand.

See alsd.GDT, LIDT andLLDT (section A.5.138).
SHL, SHR Bitwise Logical Shifts

SHL r/m8,1 ; DO /4 [8086]
SHL r/m8,CL ;D2 /4 [8086]
SHL r/m8,imm8 ; CO/4ib [186]
SHL r/m16,1 ;016 D1 /4 [8086]
SHL r/m16,CL ;016 D3 /4 [8086]
SHL r/m16,imm8 ;016 C1/41ib [186]
SHL r/m32,1 ;032D1/4 [386]
SHL r/m32,CL ; 032 D3 /4 [386]
SHL r/m32,imm8 ;032Cl/41b [386]
SHR r/m8,1 ;DO /5 [8086]
SHR r/m8,CL ;D2 /5 [8086]

115

SHR r/m8,imm8 ;CO/5ib [186]

SHR r/m16,1 ;016 D1 /5 [8086]
SHR r/m16,CL ;016 D3 /5 [8086]
SHR r/m16,imm8 ;016 C1/51ib [186]
SHR r/m32,1 ;032D1/5 [386]
SHR r/m32,CL ;032D3/5 [386]
SHR r/m32,imm8 ;032C1/51ib [386]

SHL andSHRperform a logical shift operation on the given source/destination (first) operand.
The vacated bits are filled with zero.

A synonym forSHLis SAL (see section A.5.283). NASM will assemble either one to the same
code, but NDISASM will always disassemble that cod&hi.

The number of bits to shift by is given by the second operand. Only the bottom five bits of the
shift count are considered by processors above the 8086.

You can force the longer (186 and upwards, beginning wit@laor CO byte) form of
SHL foo,1 by using aBYTEprefix: SHL foo,BYTE 1 . Similarly with SHR

A.5.291 SHLD SHRD Bitwise Double-Precision Shifts

SHLD r/m16,reg16,imm8 ;016 OF A4 /rib [386]
SHLD r/m16,reg32,imm8 ;032 0F A4 /rib [386]
SHLD r/m16,reg16,CL ; 016 OF A5 /r [386]
SHLD r/m16,reg32,CL ; 032 OF A5 /r [386]
SHRD r/m16,reg16,imm8 ;016 OF AC/rib [386]
SHRD r/m32,reg32,imm8 ;0320F AC /rib [386]
SHRD r/m16,reg16,CL ; 016 OF AD /r [386]
SHRD r/m32,reg32,CL ; 032 OF AD /r [386]

» SHLDperforms a double-precision left shift. It notionally places its second operand to the
right of its first, then shifts the entire bit string thus generated to the left by a number of
bits specified in the third operand. It then updates onlyfilseoperand according to the
result of this. The second operand is not modified.

» SHRDperforms the corresponding right shift: it notionally places the second operand to
theleft of the first, shifts the whole bit string right, and updates only the first operand.

For example, ilEAXholds0x01234567 andEBXholdsOx89ABCDEF, then the instruction
SHLD EAX,EBX,4 would updateEAXto hold 0x12345678 . Under the same conditions,
SHRD EAX,EBX,4would updateEAXto hold0xF0123456 .

The number of bits to shift by is given by the third operand. Only the bottom five bits of the
shift count are considered.

A.5.292 SHUFPDShuffle Packed Double-Precision FP Values
SHUFPD xmm1,xmm2/m128,imm8 ; 66 OF C6 /rib [WILLAMETTE,SSEZ2]

SHUFPDmoves one of the packed double-precision FP values from the destination operand
into the low quadword of the destination operand; the upper quadword is generated by moving
one of the double-precision FP values from the source operand into the destination. The select
(third) operand selects which of the values are moved to the destination register.

116

A.5.293

A.5.294

A.5.295

A.5.296

A.5.297

The select operand is an 8-bitimmediate: bit 0 selects which value is moved from the destination
operand to the result (where 0 selects the low quadword and 1 selects the high quadword) and
bit 1 selects which value is moved from the source operand to the result. Bits 2 through 7 of the
shuffle operand are reserved.

SHUFPS Shuffle Packed Single-Precision FP Values
SHUFPS xmm1,xmm2/m128,imm8 ;O0F C6/rib [KATMAI,SSE]

SHUFPSnoves two of the packed single-precision FP values from the destination operand into

the low quadword of the destination operand; the upper quadword is generated by moving two
of the single-precision FP values from the source operand into the destination. The select (third)
operand selects which of the values are moved to the destination register.

The select operand is an 8-bit immediate: bits 0 and 1 select the value to be moved from the
destination operand the low doubleword of the result, bits 2 and 3 select the value to be moved
from the destination operand the second doubleword of the result, bits 4 and 5 select the value
to be moved from the source operand the third doubleword of the result, and bits 6 and 7 select
the value to be moved from the source operand to the high doubleword of the result.

SMI: System Management Interrupt
SMI ; F1 [386,UNDOC]

SMI puts some AMD processors into SMM mode. It is available on some 386 and 486
processors, and is only available when DR7 bit 12 is set, otherwise it generates an Int 1.

SMINT, SMINTOLD Software SMM Entry (CYRIX)

SMINT ; OF 38 [PENT,CYRIX]
SMINTOLD ; OF 7E [486,CYRIX]

SMINT puts the processor into SMM mode. The CPU state information is saved in the SMM
memory header, and then execution begins at the SMM base address.

SMINTOLDis the same aSMINT, but was the opcode used on the 486.

This pair of opcodes is specific to the Cyrix and compatible range of processors (Cyrix, IBM,
Via).

SMSWStore Machine Status Word
SMSW r/m16 -OF 01 /4 [286,PRIV]

SMSVetores the bottom half of theéROcontrol register (or the Machine Status Word, on 286
processors) into the destination operand. Seeldi®Wsection A.5.139).

For 32-bit code, this would store all €RO0in the specified register (or the bottom 16 bits if the
destination is a memory location), without needing an operand size override byte.

SQRTPDPacked Double-Precision FP Square Root
SQRTPD xmm1,xmm2/m128 ;66 OF 51 /r [WILLAMETTE,SSEZ2]

SQRTPDxalculates the square root of the packed double-precision FP value from the source
operand, and stores the double-precision results in the destination register.

117

A.5.298

A.5.299

A.5.300

A.5.301

A.5.302

A.5.303

SQRTPSPacked Single-Precision FP Square Root
SQRTPS xmm1,xmm2/m128 ; OF 51 /r [KATMAI,SSE]

SQRTP&alculates the square root of the packed single-precision FP value from the source
operand, and stores the single-precision results in the destination register.

SQRTSDScalar Double-Precision FP Square Root
SQRTSD xmm1,xmm2/m128 ;F20F 51 /r [WILLAMETTE,SSEZ2]

SQRTSralculates the square root of the low-order double-precision FP value from the source
operand, and stores the double-precision result in the destination register. The high-quadword
remains unchanged.

SQRTSSScalar Single-Precision FP Square Root
SQRTSS xmm1,xmm2/m128 ;F30F 51 /r [KATMAI,SSE]

SQRTSSalculates the square root of the low-order single-precision FP value from the source
operand, and stores the single-precision result in the destination register. The three high
doublewords remain unchanged.

STC STD, STI : Set Flags

sSTC = [8086]
STD . FD [8086]
STI - FB [8086]

These instructions set various flagsl C sets the carry flagsTD sets the direction flag; and
STI sets the interrupt flag (thus enabling interrupts).

To clear the carry, direction, or interrupt flags, use@e CLDandCLI instructions (section
A.5.20). To invert the carry flag, us@M(section A.5.22).

STMXCSRStore Streaming SIMD Extension Control/Status
STMXCSR m32 ; OF AE /3 [KATMAI,SSE]

STMXCSHRstores the contents of tHdXCSRecontrol/status register to the specified memory
location MXCSHs used to enable masked/unmasked exception handling, to set rounding modes,
to set flush-to-zero mode, and to view exception status flags. The reserved bitVIX @ &R
register are stored as 0Os.

For details of theVIXCSRegister, see the Intel processor docs.

See alsc. DMXCSRsection A.5.133).
STOSB STOSWSTOSD Store Byte to String

STOSB L AA [8086]
STOSW - 016 AB [8086]
STOSD - 032 AB [386]

STOSBstores the byte il\L at [ES:DI] or [ES:EDI] . It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it BIséby

118

A.5.303.1

A.5.304

A.5.305

EDI). The flags are not modified.

The register used BI if the address size is 16 bits, aB®I ifit is 32 bits. If you need to use an
address size not equal to the currBRES setting, you can use an expliel6 ora32 prefix.

Segment override prefixes have no effect for this instruction: the Us8 foir the store t¢DI]
or [EDI] cannot be overridden.

STOSWANdSTOSDwork in the same way, but they store the worddX or the doubleword in
EAXinstead of the byte i\L, and increment or decrement the addressing registers by 2 or 4
instead of 1.

TheREPprefix may be used to repeat the instructiX(or ECX- again, the address size chooses
which) times. Th&REPaliasREPE as well as the differently-encod®&EPNEare both allowed
as well. They behave in the same wayRisP,

Pseudo-code examples
alé STOSBand with Direction Flag clear (UP) is equal to

MOV BYTE [ES:DI], AL
LEA DI, [DI + 1]

alé REP STOSWnd with Direction Flag clear (UP) is equal to

JCXZ @FF

@O:

MOV WORD [ES:DI], AX
LEA DI, [DI + 2]

alé6 LOOP @B

@@:

a32 STOSDwith Direction Flag set (DN) is equal to

MOV DWORD [ES:EDI], EAX
LEA EDI, [EDI - 4]

STR Store Task Register
STR r/m16 ; OF 00 /1 [286,PRIV]

STR stores the segment selector corresponding to the contents of the Task Register into its
operand. When the operand size is 32 bit and the destination is a register, the upper 16-bits are
cleared to Os. When the destination operand is a memory location, 16 bits are written regardless
of the operand size.

SUB Subtract Integers

SUB r/m8,reg8 ; 28 Ir [8086]
SUB r/m16,regl6 ;016 29 /r [8086]
SUB r/m32,reg32 ;03229 /r [386]
SUB reg8,r/m8 s 2A Iy [8086]
SUB reg16,r/m16 ;016 2B /r [8086]
SUB reg32,r/m32 ;032 2B Ir [386]

119

A.5.306

A.5.307

A.5.308

A.5.309

SUB r/m8,imm8 :80 /5 ib [8086]

SUB r/m16,imm16 ;016 81 /5 iw [8086]
SUB r/m32,imm32 ;03281/5id [386]
SUB r/m16,imm3 ;016 83/51b [8086]
SUB r/m32,imm8 ;03283/51b [386]
SUB AL,imm8 ;2Cib [8086]
SUB AX,imm16 ; 016 2D iw [8086]
SUB EAX,imm32 ;032 2D id [386]

SUBperforms integer subtraction: it subtracts its second operand from its first, and leaves the
result in its destination (first) operand. The flags are set according to the result of the operation:
in particular, the carry flag is affected and can be used by a subsegfdBiristruction (section
A.5.285).

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tI&TRICT WORDr STRICT DWORDBualifier.

The CMP(see section A.5.24) instruction performs the same operatidiUdsbut without
writing to the destination operand. That s, it only reads the operands and writes the status flags.

SUBPD Packed Double-Precision FP Subtract
SUBPD xmm1,xmm2/m128 ;66 OF 5C /r [WILLAMETTE,SSEZ]

SUBPDsubtracts the packed double-precision FP values of the source operand from those of
the destination operand, and stores the result in the destination operation.

SUBPS Packed Single-Precision FP Subtract
SUBPS xmm1,xmm2/m128 ; OF 5C /Ir [KATMAI,SSE]

SUBPSsubtracts the packed single-precision FP values of the source operand from those of the
destination operand, and stores the result in the destination operation.

SUBSD Scalar Single-FP Subtract
SUBSD xmm1,xmm2/m128 ;F20F5C/r [WILLAMETTE,SSEZ2]

SUBSDsubtracts the low-order double-precision FP value of the source operand from that of
the destination operand, and stores the result in the destination operation. The high quadword
is unchanged.

SUBSS Scalar Single-FP Subtract
SUBSS xmm1,xmm2/m128 ; F30F 5C /r [KATMAI,SSE]

SUBSSsubtracts the low-order single-precision FP value of the source operand from that
of the destination operand, and stores the result in the destination operation. The three high
doublewords are unchanged.

120

A.5.310

A.5.311

A.5.312

A.5.313

A.5.314

SVDC Save Segment Register and Descriptor
SVDC m80,segreg ;OF 78 Ir [486,CYRIX,SMM]
SVDCsaves a segment register (DS, ES, FS, GS, or SS) and its descriptor to mema80.

SVLDT: Save LDTR and Descriptor
SVLDT m80 : OF 7A /0 [486,CYRIX,SMM]
SVLDTsaves the Local Descriptor Table (LDTR) to mema8O0.

SVTS Save TSR and Descriptor
SVTS m80 ;OF 7C /0 [486,CYRIX,SMM]
SVTSsaves the Task State Register (TSR) to mema80.

SYSCALL Call Operating System
SYSCALL ; OF 05 [P6,AMD]

SYSCALLprovides a fast method of transferring control to a fixed entry point in an operating
system.

* TheEIP register is copied into thECXregister.

* Bits [31-0] of the 64-bit SYSCALL/SYSRET Target Address Regis&TAR are copied
into theEIP register.

» Bits [47-32] of theSTARregister specify the selector that is copied into@®ister.

» Bits [47-32]+1000b of the&STARregister specify the selector that is copied into the SS
register.

TheCSandSSregisters should not be modified by the operating system between the execution
of the SYSCALLinstruction and its correspondir®)y SRETinstruction.

For more information, see the
SYSCALL and SYSRET Instruction Specification (AMD document number
21086.pdf).

SYSENTERFast System Call

SYSENTER ; OF 34 [P6]

SYSENTERexecutes a fast call to a level 0 system procedure or routine. Before using this
instruction, various MSRs need to be set up:

« SYSENTER_CS_MSe¢vntains the 32-bit segment selector for the privilege level 0 code
segment. (This value is also used to compute the segment selector of the privilege level 0
stack segment.)

« SYSENTER_EIP_MSRontains the 32-bit offset into the privilege level 0 code segment
to the first instruction of the selected operating procedure or routine.

« SYSENTER_ESP_MSé#odntains the 32-bit stack pointer for the privilege level O stack.

121

A.5.315

SYSENTERerforms the following sequence of operations:

Loads the segment selector from B¥SENTER_CS_MSRto theCSregister.
Loads the instruction pointer from ti&YSENTER_EIP_MSHto theEIP register.
Adds 8 to the value ISYSENTER_CS_MS#&hd loads it into th&Sregister.
Loads the stack pointer from ti&Y SENTER_ESP_MSRto theESPregister.
Switches to privilege level 0.

Clears thevMflag in theEFLAGSregister, if the flag is set.

Begins executing the selected system procedure.

In particular, note that this instruction des not save the valu€&sSalr (E)IP . If you need to
return to the calling code, you need to write your code to cater for this.

For more information, see the Intel Architecture Software Developer's Manual, Volume 2.

SYSEXIT: Fast Return From System Call
SYSEXIT ; OF 35 [P6,PRIV]

SYSEXIT executes a fast return to privilege level 3 user code. This instruction is a companion
instruction to theSYSENTERnNstruction, and can only be executed by privilege level O code.
Various registers need to be set up before calling this instruction:

SYSENTER_CS_MSégdntains the 32-bit segment selector for the privilege level 0 code
segment in which the processor is currently executing. (This value is used to compute the
segment selectors for the privilege level 3 code and stack segments.)

EDXcontains the 32-bit offset into the privilege level 3 code segment to the first instruction
to be executed in the user code.

ECXcontains the 32-bit stack pointer for the privilege level 3 stack.

SYSEXIT performs the following sequence of operations:

Adds 16 to the value i8YSENTER_CS_ MS&nhd loads the sum into th@S selector
register.

Loads the instruction pointer from tiiEDXregister into theeIP register.

Adds 24 to the value 'sYSENTER_CS_MS&nd loads the sum into theS selector
register.

Loads the stack pointer from thl&CXregister into theeSPregister.
Switches to privilege level 3.

Begins executing the user code at EI® address.

For more information on the use of tliYSENTERaNdSYSEXIT instructions, see the Intel
Architecture Software Developer's Manual, Volume 2.

122

A.5.316

A.5.317

SYSRET Return From Operating System
SYSRET ; OF 07 [P6,AMD,PRIV]

SYSRETis the return instruction used in conjunction with ®€SCALLinstruction to provide
fast entry/exit to an operating system.

* TheECXregister, which points to the next sequential instruction after the corresponding
SYSCALLinstruction, is copied into thEIP register.

» Bits [63-48] of theSTARregister specify the selector that is copied into@®ister.

* Bits [63-48]+1000b of theSTARregister specify the selector that is copied into §&
register.

* Bits [1-0] of theSSregister are set to 11b (RPL of 3) regardless of the value of bits [49-
48] of theSTARregister.

TheCSandSSregisters should not be modified by the operating system between the execution
of the SYSCALLinstruction and its correspondir®) SRETinstruction.

For more information, see the
SYSCALL and SYSRET Instruction Specification (AMD document number
21086.pdf).

TEST: Test Bits (notional bitwise AND)

TEST r/m8,reg8 ; 84 Ir [8086]
TEST r/m16,reg16 ;016 85 /r [8086]
TEST r/m32,reg32 ;03285 /r [386]
TEST r/m8,imm8 ; F6 /0 ib [8086]
TEST r/m16,imm16 ;016 F7 /0 iw [8086]
TEST r/m32,imm32 ;032 F7/0id [386]
TEST AL,imm8 ; A8 ib [8086]
TEST AX,imm16 ; 016 A9 iw [8086]
TEST EAX,imm32 ; 032 A9 id [386]

TEST performs a ‘mental’ bitwise AND of its two operands, and affects the flags as if the
operation had taken place, but does not store the result of the operation anywhere. (For bitwise
AND that does store the result, see section A.5.8.)

The Carry Flag is cleared BYEST. The Zero Flag is set according to whether the result is zero.

The order of operands TESTdoes not matter, except that an immediate operand must always

be used as the second operand (source operand). So, when a memory operand and a register
operand are used together, the memory operand may be either the first or the second operand
in the source text without a discernible difference. Two-register instructions may choose either

of the two registers for the ModR/M operand and the other for the /r operand. This choice may
result in differing disassembly.

123

A.5.318

A.5.319

A.5.320

A.5.321

UCOMISD Unordered Scalar Double-Precision FP compare and set
EFLAGS

UCOMISD xmm1,xmm2/m128 ;66 OF 2E /r [WILLAMETTE,SSEZ]

UCOMISxompares the low-order double-precision FP numbers in the two operands, and sets
the ZF, PF and CF bits in theEFLAGSregister. In addition, th©F, SF and AF bits in the
EFLAGSregister are zeroed out. The unordered predicZfe PF andCFall set) is returned if

either source operand idNaN(gNaN or sNaN).

UCOMISS Unordered Scalar Single-Precision FP compare and set
EFLAGS

UCOMISS xmm1,xmm2/m128 ; OF 2E Ir [KATMAI,SSE]

UCOMISSompares the low-order single-precision FP numbers in the two operands, and sets
the ZF, PF and CF bits in theEFLAGSregister. In addition, th©F, SF and AF bits in the
EFLAGSregister are zeroed out. The unordered predicZfePF andCFall set) is returned if

either source operand idNaN(gNaN or sNaN).

UDQ UD1, UD2 Undefined Instruction

UDO . OF FF [186,UNDOC]
uD1 . OF B9 [186,UNDOC]
UD2 : OF 0B [186]

UDxcan be used to generate an invalid opcode exception, for testing purposes.
UDQOis specifically documented by AMD as being reserved for this purpose.
UDL1is documented by Intel as being available for this purpose.

UD2is specifically documented by Intel as being reserved for this purpose. Intel document this
as the preferred method of generating an invalid opcode exception.

All these opcodes can be used to generate invalid opcode exceptions on all currently available
processors.

UMOVUser Move Data

UMOV r/m8,reg8 ;OF 10 /r [386,UNDOC]
UMOV r/m16,reg16 ;016 OF 11 /r [386,UNDOC]
UMOV r/m32,reg32 ;032 0F 11 /r [386,UNDOC]
UMOV reg8,r/m8 s OF 12 /r [386,UNDOC]
UMOV reg16,r/m16 ; 016 OF 13 /r [386,UNDOC]
UMOV reg32,r/m32 ;032 OF 13 /r [386,UNDOC]

This undocumented instruction is used by in-circuit emulators to access user memory (as
opposed to host memory). It is used just like an ordinary memory/register or register/register
MOMnstruction, but accesses user space.

This instruction is only available on some AMD and IBM 386 and 486 processors.

124

A.5.322 UNPCKHPDUnpack and Interleave High Packed Double-Precision FP
Values

UNPCKHPD xmm1,xmm2/m128 ;66 OF 15/r [WILLAMETTE,SSEZ2]

UNPCKHPDRerforms an interleaved unpack of the high-order data elements of the source and
destination operands, saving the resukkmmm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[63-0] :=dst[127-64];
dst[127-64] := src[127-64].

A.5.323 UNPCKHPSUnpack and Interleave High Packed Single-Precision FP
Values
UNPCKHPS xmm1,xmm2/m128 ; OF 15 /r [KATMAI,SSE]

UNPCKHP®erforms an interleaved unpack of the high-order data elements of the source and
destination operands, saving the resultimm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[31-0] := dst[95-64];
dst[63-32] :=src[95-64];
dst[95-64] := dst[127-96];
dst[127-96] := src[127-96].

A.5.324 UNPCKLPDUnNpack and Interleave Low Packed Double-Precision FP
Data

UNPCKLPD xmm1,xmm2/m128 ;66 OF 14 /r [WILLAMETTE,SSEZ2]

UNPCKLPDperforms an interleaved unpack of the low-order data elements of the source and
destination operands, saving the resultimm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[63-0] := dst[63-0];
dst[127-64] := src[63-0].

A.5.325 UNPCKLPSUnpack and Interleave Low Packed Single-Precision FP
Data
UNPCKLPS xmm1,xmm2/m128 ; OF 14 /r [KATMAI,SSE]

UNPCKLP$erforms an interleaved unpack of the low-order data elements of the source and
destination operands, saving the resultimm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[31-0] :=dst[31-0];
dst[63-32] := src[31-0];
dst[95-64] := dst[63-32];
dst[127-96] := src[63-32].

125

A.5.326

A.5.327

A.5.328

A.5.329

A.5.330

A.5.331

VERR VERWVerify Segment Readability/Writability
VERR r/m16 ; OF 00 /4 [286,PRIV]
VERW r/m16 - OF 00 /5 [286,PRIV]

* VERRSsets the zero flag if the segment specified by the selector in its operand can be read
from at the current privilege level. Otherwise it is cleared.

* VERWsets the zero flag if the segment can be written.

WAIT: Wait for Floating-Point Processor

WAIT - 9B [8086]
FWAIT - OB [8086]

WAIT, on 8086 systems with a separate 8087 FPU, waits for the FPU to have finished any
operation itis engaged in before continuing main processor operations, so that (for example) an
FPU store to main memory can be guaranteed to have completed before the CPU tries to read
the result back out.

On higher processorg/AITis unnecessary for this purpose, and it has the alternative purpose of
ensuring that any pending unmasked FPU exceptions have happened before execution continues.

WBINVD Write Back and Invalidate Cache
WBINVD : OF 09 [486]

WBINVDinvalidates and empties the processor's internal caches, and causes the processor to
instruct external caches to do the same. It writes the contents of the caches back to memory first,
so no data is lost. To flush the caches quickly without bothering to write the data back first, use
INVD (section A.5.125).

WRMSRN/rite Model-Specific Registers
WRMSR ; OF 30 [PENT]

WRMSHRrrites the value irEDX:EAXto the processor Model-Specific Register (MSR) whose
index is stored iIlECX See alsiRDMSKsection A.5.270).

WRSHRWrite SMM Header Pointer Register
WRSHR r/m32 ; OF 37 /0 [386,CYRIX,SMM]

WRSHMads the contents of either a 32-bit memory location or a 32-bit register into the SMM
header pointer register.

See alsRDSHRsection A.5.272).
XADD Exchange and Add

XADD r/m8,reg8 ; OF CO /r [486]
XADD r/m16,regl6 ;016 OF C1 /r [486]
XADD r/m32,reg32 ;0320F C1 /r [486]

XADDexchanges the values in its two operands, and then adds them together and writes the

126

A.5.332

A.5.333

A.5.334

result into the destination (first) operand. This instruction can be used Wi@CKprefix for
multi-processor synchronisation purposes.

XBTS Extract Bit String

XBTS regl6,r/m16 ; 016 OF A6 /r [386,UNDOC]
XBTS reg32,r/m32 ; 032 OF A6 /r [386,UNDOC]

The implied operation of this instruction is:

XBTS r/m16,reg16,AX,CL
XBTS r/m32,reg32,EAX,CL

Writes a bit string from the source operand to the destina@arindicates the number of bits

to be copied, an@E)AX indicates the low order bit offset in the source. The bits are written
to the low order bits of the destination register. For exampl€Liis set to 4 andAX (for 16-

bit code) is set to 5, bits 5-8 afc will be copied to bits 0-3 ofist . This instruction is very
poorly documented, and | have been unable to find any official source of documentation on it.

XBTSis supported only onthe early Intel 386s, and conflicts with the opcodEMEXCHG486
(on early Intel 486s). NASM supports it only for completeness. Its counterpiiS (see
section A.5.116).

XCHGExchange

XCHG reg8,r/m8 ; 86 /r [8086]
XCHG reg16,r/m16 ; 016 87 Ir [8086]
XCHG reg32,r/m32 ; 032 87 Ir [386]
XCHG r/m8,reg8 ; 86 /r [8086]
XCHG r/m16,reg16 ; 016 87 Ir [8086]
XCHG r/m32,reg32 ;032 87 Ir [386]
XCHG AX,reg16 ; 016 90+r [8086]
XCHG EAX,reg32 ; 032 90+r [386]
XCHG regl16,AX ; 016 90+r [8086]
XCHG reg32,EAX ; 032 90+r [386]

XCHGexchanges the values in its two operands. It can be used Wi@IC&Kprefix for purposes
of multi-processor synchronisation.

XCHG AX,AXor XCHG EAX,EAXdepending on th&ITS setting) generates the opcode
90h, and so is a synonym foMOP(section A.5.190).

TheXCHGncodings as listed are actually all listed twice. That is because the order of operands
does not matter, so a memory operand orAbeor EAXoperand may be either the first or the
second operand in the source text without a discernible difference. Two-register instructions
without anAX or EAXoperand may choose either of the two registers for the ModR/M operand
and the other for the /r operand. This choice may result in differing disassembly.

XLATB Translate Byte in Lookup Table

XLAT . D7 [8086]
XLATB - D7 [8086]

127

A.5.335

A.5.336

XLATBadds the value iAL, treated as an unsigned byteBXor EBX and loads the byte from
the resulting address (in the segment specifieD8yback intoAL.

The base register usedBXif the address size is 16 bits, ag®8Xif it is 32 bits. If you need to
use an address size not equal to the cufB#hE setting, you can use an explial6 ora32
prefix.

On 386 or higher level machines, the segment register used to load [B¥mAL] or
[EBX+AL] can be overridden by using a segment register name as a prefix (for example,
ES XLATB. Itis reported that a segment override may be ignored by CPUs of a lower level
than a 386.

XOR Bitwise Exclusive OR

XOR r/m8,reg8 ;30 /r [8086]
XOR r/m16,regl6 ;016 31 /r [8086]
XOR r/m32,reg32 ;03231 /r [386]
XOR reg8,r/m8 ;32 1r [8086]
XOR regl6,r/m16 ;016 33 /r [8086]
XOR reg32,r/m32 ;032 33 /r [386]
XOR r/m8,imm8 ;80 /6 ib [8086]
XOR r/m16,imm16 ;016 81 /6 iw [8086]
XOR r/m32,imm32 ;03281 /6 id [386]
XOR r/m16,imm8 ;01683/61b [8086]
XOR r/m32,imm8 ;03283/6 b [386]
XOR AL,imm8 ;34 1b [8086]
XOR AX,imm16 ; 016 35 iw [8086]
XOR EAX,imm32 ;032 35 id [386]

XORperforms a bitwise XOR operation between its two operands (i.e. each bit of the result is
1 if and only if exactly one of the corresponding bits of the two inputs was 1), and stores the
result in the destination (first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. The
BYTE qualifier can be used to force NASM to generate this form of the instruction. Recent
versions of NASM automatically optimise to this form if the immediate operand's value is known
during the assembling of that instruction, and fits in the range of a signed byte. The longer variant
can then still be forced using tI&TRICT WORDr STRICT DWORDBualifier.

The Carry Flag is cleared bYOR The Zero Flag is set according to whether the result is zero.

TheMMXnstructionPXORsee section A.5.266) performs the same operation on the 6AM¥
registers.

XORPDBItwise Logical XOR of Double-Precision FP Values
XORPD xmm1,xmm2/m128 ;66 OF 57 /r [WILLAMETTE,SSEZ2]

XORPDreturns a bit-wise logical XOR between the source and destination operands, storing
the result in the destination operand.

128

A.5.337 XORPSBitwise Logical XOR of Single-Precision FP Values
XORPS xmm1,xmm2/m128 ; OF 57 Ir [KATMAI,SSE]

XORPSeturns a bit-wise logical XOR between the source and destination operands, storing
the result in the destination operand.

129

Source Control Revision ID

hg eOfbf77072fe, from commit on at 2025-06-11 21:19:56 +0200
Ifthisis inecm's repository, you canfind it at https://hg.pushbx.org/ecm/insref/rev/e0fbf77072fe

130

https://hg.pushbx.org/ecm/insref/rev/e0fbf77072fe

Index

aleé

41, 68, 74, 83, 87, 100, 108, 114, 119, 128

a32

41, 68, 74, 83, 87, 100, 108, 114, 119, 128

AAA
AAD
AAM
AAS
ADC
ADD
ADDPD
ADDPS
ADDSD
ADDSS
AND
ANDNPD
ANDNPS
ANDPD
ANDPS
ARPL
BOUND
BSF
BSR
BSWAP
BT

BTC
BTR
BTS
CALL
CBW
CDQ
CLC
CLD
CLFLUSH
CLI
CLTS
CMC
CMOVcc
CMP

30
30
30
30
31
32
32
33
33
33
33
34
34
35
35
35
35
36
36
36
36
36
36
36
37
38
38
38
38
38
38
38
38
38
39

131

CMPccPD
CMPccPS
CMPccSD
CMPccSS
CMPEQPD
CMPEQPS
CMPEQSD
CMPEQSS
CMPLEPD
CMPLEPS
CMPLESD
CMPLESS
CMPLTPD
CMPLTPS
CMPLTSD
CMPLTSS
CMPNEQPD
CMPNEQPS
CMPNEQSD
CMPNEQSS
CMPNLEPD
CMPNLEPS
CMPNLESD
CMPNLESS
CMPNLTPD
CMPNLTPS
CMPNLTSD
CMPNLTSS
CMPORDPD
CMPORDPS
CMPORDSD
CMPORDSS
CMPSB
CMPSD
CMPSW
CMPUNORDPD
CMPUNORDPS
CMPUNORDSD
CMPUNORDSS

39
40
42
42
39
40
42
42
39
40
42
42
39
40
42
42
39
40
42
42
39
40
42
42
39
40
42
42
39
40
42
42
41
41
41
39
40
42
42

CMPXCHG
CMPXCHG486
CMPXCHGS8B
COMISD
COMISS
conditional jump
condition codes

Condition Predicates

Control Flags
Control registers
CPUID

CRO
CVTDQ2PD
CVTDQ2PS
CVTPD2DQ
CVTPD2PI
CVTPD2PS
CVTPI2PD
CVTPI2PS
CVTPS2DQ
CVTPS2PD
CVTPS2PI
CVTSD2SI
CVTSD2SS
CVTSI2SD
CVTSI2SS
CVTSS2SD
CVTSS2SI
CVTTPD2DQ
CVTTPD2PI
CVTTPS2DQ
CVTTPS2PI
CVTTSD2SI
CVTTSS2SI
CWD

CWDE

DAA

DAS

Debug registers
DEC
Direction flag
DIV

DIVPD
DIVPS
DIVSD
DIVSS

DN

43
43
44
44
44
70

23
21
45

74,117

45
45
46
46
46
46
47
47
47
47
47
48
48
48
48
49
49
49
49
50
50
50
38
38
50
50
21
51
24
51
51
52
52
52
24

19, 21,70
22,40, 42,43

132

effective address
EMMS
ENTER
FABS
FADD
FADDP
far call
far jump
FBLD
FBSTP
FCHS
FCLEX
FCMOVcc
FCOM
FCOMI
FCOMIP
FCOMP
FCOMPP
FCOS
FDECSTP
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FEMMS
FENI
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FLD
FLDCW
FLDENV
FLDxx

floating-point registers

FMUL
FMULP

24
52
52
53
53
53
37
71
54
54
54
54
54
55
55
55
55
55
56
56
56
56
56
56
56
57
56
57
57
57
57
58
58
58
58
58
58
58
58
59
59
59
60
59

21
60
60

FNDISI 56 INSB 68

FNENI 56 INSD 68
FNINIT 58 INSW 68
FNOP 60 INT 68
FPATAN 60 INTO1 69
FPREM 60 INT1 69
FPREM1 60 INT3 69
FPTAN 60 Interrupt flag 24
FRNDINT 61 interrupt lockout 24
FRSTOR 61 INTO 69
FSAVE 61 INVD 69
FSCALE 61 INVLPG 69
FSETPM 61 IRET 69
FSIN 61 IRETD 69
FSINCOS 61 IRETW 69
FSQRT 62 Jcc 70
FST 62 JCXZ 70
FSTCW 62 JECXZ 70
FSTENV 62 JMP 70
FSTP 62 LAHF 71
FSTSW 62 LAR 71
FSUB 63 LDMXCSR 72
FSUBP 63 LDS 72
FSUBR 63 LEA 72
FSUBRP 63 LEAVE 73
FTST 63 LES 72
FUCOMXxx 63 LFENCE 73
FXAM 64 LFS 72
FXCH 64 LGDT 73
FxDISI 56 LGS 72
FXENI 56 LIDT 73
F2XM1 53 LLDT 73
FXRSTOR 65 LMSW 74
FXSAVE 65 LOADALL 74
FXTRACT 65 LOADALL286 74
FYL2X 65 LODSB 74
FYL2XP1 65 LODSD 74
general purpose register 18 LODSW 74
HLT 65 LOOP 75
IBTS 66 LOOPE 75
ICEBP 69 LOOPNE 75
IDIV 66 LOOPNZ 75
idle 65 LOOPZ 75
immediate operand 18 LSL 75
IMUL 66 LSS 72
IN 67 LTR 75
INC 67 Machine Status Word 74,117

133

MASKMOVDQU
MASKMOVQ
MAXPD
MAXPS
MAXSD
MAXSS
memory reference
MFENCE
MINPD
MINPS
MINSD
MINSS

MMX registers
ModR/M byte
MOV
MOVAPD
MOVAPS
MOVD
MOVDQA
MOVDQ2Q
MOVDQU
MOVHLPS
MOVHPD
MOVHPS
MOVLHPS
MOVLPD
MOVLPS
MOVMSKPD
MOVMSKPS
MOVNTDQ
MOVNTI
MOVNTPD
MOVNTPS
MOVNTQ
MOVQ
MOVQ2DQ
MOVSB
MOVSD
MOVSS
MOVSW
MOVSX
MOV to SS
MOVUPD
MOVUPS
MOVZX
MUL
MULPD

75
76
76
76
76
76

18

76
77
77
77
78
21
19, 24
78
79
79
79
79
79
80
80
80
80
81
81
81
82
82
82
82
82
82
82
83
83
83
83, 84
84
83
84
24
84
85
84
85
85

134

MULPS
MULSD
MULSS
near call
near jump
NEG

NOP

NOT

OR
ORPD
ORPS
ouT
OUTSB
OUTSD
OuUTsSW
PACKSSDW
PACKSSWB
PACKUSWB
PADDB
PADDD
PADDQ
PADDSB
PADDSIW
PADDSW
PADDUSB
PADDUSW
PADDW
PAND
PANDN
PAUSE
PAVEB
PAVGB
PAVGUSB
PAVGW
PCMPxx
PDISTIB
PEXTRW
PFACC
PFADD
PFCMPEQ
PFCMPGE
PFCMPGT
PFCMPxx
PF2ID
PF2IW
PFMAX
PFMIN

85
85
85
37
71
86
86
86
86
87
87
87
87
87
87
88
88
88
89
89
89
89
89
89
90
90
89
90
90
90
90
91
91
91
91
92
92
93
93
93
93
93
93
92
93
93
94

PFMUL
PFNACC
PFPNACC
PFRCP
PFRCPIT1
PFRCPIT2
PFRSQIT1
PFRSQRT
PFSUB
PFSUBR
PI2FD
PI2FW
PINSRW
PMACHRIW
PMADDWD
PMAGW
PMAXSW
PMAXUB
PMINSW
PMINUB
PMOVMSKB
PMULHRIW
PMULHRWA
PMULHRWC
PMULHUW
PMULHW
PMULLW
PMULUDQ
PMVccZB
POP

POPA
POPAD
POPAW
POPAX
POPF
POPFD
POPFW
POPFx

POP to SS
POR
PREFETCH
PREFETCHh
PREFETCHNTA
PREFETCHTO
PREFETCHT1
PREFETCHT2
PSADBW

94
94
94
94
95
95
95
95
96
96
96
96
96
96
97
97
97
98
98
98
98
98
99
98
99
99
99
99
100
100
101
101
101
101
101
101
101
101
24
101
101
102
102
102
102
102
102

135

PSHUFD
PSHUFHW
PSHUFLW
PSHUFW
PSLLx
PSRAX
PSRLx
PSUBSIW
PSUBSxx
PSUBUSXx
PSUBx
PSWAPD
PSWAPW
PUNPCKXxxx
PUSH
PUSHA
PUSHAD
PUSHAW
PUSHAX
PUSHF
PUSHFD
PUSHFW
PUSHFx
PXOR

RCL
RCPPS
RCPSS
RCR
RDMSR
RDPMC
RDSHR
RDTSC
register pop
register push
repeated string operation
restricted memory references
RET

RETF
RETN

REX

ROL

ROR

RPL

RSDC
RSLDT
RSM
RSQRTPS

102
102
103
103
103
104
104
106
105
105
105
106
106
106
107
108
108
108
108
109
108
108
108
109
109
109
110
109
110
110
110
110
100
108
24
19
110
110
110
28
111
111
35
111
111
111
111

RSQRTSS
RSTS
SAHF
SAL

SALC
SAR

SBB
SCASB
SCASD
SCASW
Segment registers
SETcc
SFENCE
SGDT
SHL
SHLD
short jump
SHR
SHRD
SHUFPD
SHUFPS
SIB byte
SIDT
SLDT
SMI
SMINT
SMINTOLD
SMSW
SQRTPD
SQRTPS
SQRTSD
SQRTSS
SSE Condition Predicates

stack frame
Status Flags
STC

STD

STI
STMXCSR
STOSB
STOSD
STOSW
STR

SUB
SUBPD
SUBPS

112
112
112
112
113
112
113
114
114
114

21

114
114
115
115
116
70,71,75
115
116
116
117
19, 24
115
115
117
117
117
117
117
118
118
118

22,40,42, 43

53,73
23

118
118
118
118
118
118
118
119
119
120
120

136

SUBSD
SUBSS
SVDC
SVLDT
SVTS
SYSCALL
SYSENTER
SYSEXIT
SYSRET
TEST

Test registers
Trace flag
UCOMISD
UCOMISS
uDO

uD1

uD2
UuMoVv
UNPCKHPD
UNPCKHPS
UNPCKLPD
UNPCKLPS
UP

VERR
VERW
WAIT
WBINVD
WRMSR
WRSHR
XADD
XBTS
XCHG
XLATB

XMM (SSE) registers

XOR
XORPD
XORPS

120
120
121
121
121
121
121
122
123
123
21
24

124
124
124
124
124
124
125
125
125
125

24
126
126
126
126
126
126
126
127
127
127

21

128
128
129

	NASM 2.05 based x86 Instruction Reference
	Contents
	Section 1: License
	Appendix A: x86 Instruction Reference
	A.1 Key to Operand Specifications
	A.2 Key to Opcode Descriptions
	A.2.1 Register Values
	A.2.2 Condition Codes
	A.2.3 SSE Condition Predicates
	A.2.4 Status Flags
	A.2.5 Control Flags
	A.2.5.1 IF - Interrupt flag
	A.2.5.2 DF - Direction flag
	A.2.5.3 TF - Trace flag

	A.2.6 Effective Address Encoding: ModR/M and SIB
	A.2.6.1 ModR/M encoding a register
	A.2.6.2 Memory a16 ModR/M encoding
	A.2.6.3 Memory a32 ModR/M and SIB encoding

	A.2.7 Instruction Prefixes
	A.2.7.1 8086 Instruction Prefixes
	A.2.7.1.1 8086 Segment Overrides
	A.2.7.1.2 8086 Repeat Prefixes
	A.2.7.1.3 8086 LOCK Prefix

	A.2.7.2 286 Instruction Prefixes
	A.2.7.3 386 Instruction Prefixes

	A.2.8 Register Extensions: The REX Prefix

	A.3 Key to Instruction Flags
	A.4 Emulator notes
	A.4.1 Common corner cases
	A.4.2 Emulator call encodings

	A.5 x86 Instruction Set
	A.5.1 AAA, AAS, AAM, AAD: ASCII Adjustments
	A.5.2 ADC: Add with Carry
	A.5.3 ADD: Add Integers
	A.5.4 ADDPD: ADD Packed Double-Precision FP Values
	A.5.5 ADDPS: ADD Packed Single-Precision FP Values
	A.5.6 ADDSD: ADD Scalar Double-Precision FP Values
	A.5.7 ADDSS: ADD Scalar Single-Precision FP Values
	A.5.8 AND: Bitwise AND
	A.5.9 ANDNPD: Bitwise Logical AND NOT of Packed Double-Precision FP Values
	A.5.10 ANDNPS: Bitwise Logical AND NOT of Packed Single-Precision FP Values
	A.5.11 ANDPD: Bitwise Logical AND For Single FP
	A.5.12 ANDPS: Bitwise Logical AND For Single FP
	A.5.13 ARPL: Adjust RPL Field of Selector
	A.5.14 BOUND: Check Array Index against Bounds
	A.5.15 BSF, BSR: Bit Scan
	A.5.16 BSWAP: Byte Swap
	A.5.17 BT, BTC, BTR, BTS: Bit Test
	A.5.18 CALL: Call Subroutine
	A.5.19 CBW, CWD, CDQ, CWDE: Sign Extensions
	A.5.20 CLC, CLD, CLI, CLTS: Clear Flags
	A.5.21 CLFLUSH: Flush Cache Line
	A.5.22 CMC: Complement Carry Flag
	A.5.23 CMOVcc: Conditional Move
	A.5.24 CMP: Compare Integers
	A.5.25 CMPccPD: Packed Double-Precision FP Compare
	A.5.26 CMPccPS: Packed Single-Precision FP Compare
	A.5.27 CMPSB, CMPSW, CMPSD: Compare Strings
	A.5.27.1 Pseudo-code examples

	A.5.28 CMPccSD: Scalar Double-Precision FP Compare
	A.5.29 CMPccSS: Scalar Single-Precision FP Compare
	A.5.30 CMPXCHG, CMPXCHG486: Compare and Exchange
	A.5.31 CMPXCHG8B: Compare and Exchange Eight Bytes
	A.5.32 COMISD: Scalar Ordered Double-Precision FP Compare and Set EFLAGS
	A.5.33 COMISS: Scalar Ordered Single-Precision FP Compare and Set EFLAGS
	A.5.34 CPUID: Get CPU Identification Code
	A.5.35 CVTDQ2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion
	A.5.36 CVTDQ2PS: Packed Signed INT32 to Packed Single-Precision FP Conversion
	A.5.37 CVTPD2DQ: Packed Double-Precision FP to Packed Signed INT32 Conversion
	A.5.38 CVTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversion
	A.5.39 CVTPD2PS: Packed Double-Precision FP to Packed Single-Precision FP Conversion
	A.5.40 CVTPI2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion
	A.5.41 CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
	A.5.42 CVTPS2DQ: Packed Single-Precision FP to Packed Signed INT32 Conversion
	A.5.43 CVTPS2PD: Packed Single-Precision FP to Packed Double-Precision FP Conversion
	A.5.44 CVTPS2PI: Packed Single-Precision FP to Packed Signed INT32 Conversion
	A.5.45 CVTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion
	A.5.46 CVTSD2SS: Scalar Double-Precision FP to Scalar Single-Precision FP Conversion
	A.5.47 CVTSI2SD: Signed INT32 to Scalar Double-Precision FP Conversion
	A.5.48 CVTSI2SS: Signed INT32 to Scalar Single-Precision FP Conversion
	A.5.49 CVTSS2SD: Scalar Single-Precision FP to Scalar Double-Precision FP Conversion
	A.5.50 CVTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion
	A.5.51 CVTTPD2DQ: Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.52 CVTTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.53 CVTTPS2DQ: Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.54 CVTTPS2PI: Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
	A.5.55 CVTTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion with Truncation
	A.5.56 CVTTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion with Truncation
	A.5.57 DAA, DAS: Decimal Adjustments
	A.5.58 DEC: Decrement Integer
	A.5.59 DIV: Unsigned Integer Divide
	A.5.60 DIVPD: Packed Double-Precision FP Divide
	A.5.61 DIVPS: Packed Single-Precision FP Divide
	A.5.62 DIVSD: Scalar Double-Precision FP Divide
	A.5.63 DIVSS: Scalar Single-Precision FP Divide
	A.5.64 EMMS: Empty MMX State
	A.5.65 ENTER: Create Stack Frame
	A.5.66 F2XM1: Calculate 2**X-1
	A.5.67 FABS: Floating-Point Absolute Value
	A.5.68 FADD, FADDP: Floating-Point Addition
	A.5.69 FBLD, FBSTP: BCD Floating-Point Load and Store
	A.5.70 FCHS: Floating-Point Change Sign
	A.5.71 FCLEX, FNCLEX: Clear Floating-Point Exceptions
	A.5.72 FCMOVcc: Floating-Point Conditional Move
	A.5.73 FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare
	A.5.74 FCOS: Cosine
	A.5.75 FDECSTP: Decrement Floating-Point Stack Pointer
	A.5.76 FxDISI, FxENI: Disable and Enable Floating-Point Interrupts
	A.5.77 FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
	A.5.78 FEMMS: Faster Enter/Exit of the MMX or floating-point state
	A.5.79 FFREE: Flag Floating-Point Register as Unused
	A.5.80 FIADD: Floating-Point/Integer Addition
	A.5.81 FICOM, FICOMP: Floating-Point/Integer Compare
	A.5.82 FIDIV, FIDIVR: Floating-Point/Integer Division
	A.5.83 FILD, FIST, FISTP: Floating-Point/Integer Conversion
	A.5.84 FIMUL: Floating-Point/Integer Multiplication
	A.5.85 FINCSTP: Increment Floating-Point Stack Pointer
	A.5.86 FINIT, FNINIT: initialize Floating-Point Unit
	A.5.87 FISUB: Floating-Point/Integer Subtraction
	A.5.88 FLD: Floating-Point Load
	A.5.89 FLDxx: Floating-Point Load Constants
	A.5.90 FLDCW: Load Floating-Point Control Word
	A.5.91 FLDENV: Load Floating-Point Environment
	A.5.92 FMUL, FMULP: Floating-Point Multiply
	A.5.93 FNOP: Floating-Point No Operation
	A.5.94 FPATAN, FPTAN: Arctangent and Tangent
	A.5.95 FPREM, FPREM1: Floating-Point Partial Remainder
	A.5.96 FRNDINT: Floating-Point Round to Integer
	A.5.97 FSAVE, FRSTOR: Save/Restore Floating-Point State
	A.5.98 FSCALE: Scale Floating-Point Value by Power of Two
	A.5.99 FSETPM: Set Protected Mode
	A.5.100 FSIN, FSINCOS: Sine and Cosine
	A.5.101 FSQRT: Floating-Point Square Root
	A.5.102 FST, FSTP: Floating-Point Store
	A.5.103 FSTCW: Store Floating-Point Control Word
	A.5.104 FSTENV: Store Floating-Point Environment
	A.5.105 FSTSW: Store Floating-Point Status Word
	A.5.106 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract
	A.5.107 FTST: Test ST0 Against Zero
	A.5.108 FUCOMxx: Floating-Point Unordered Compare
	A.5.109 FXAM: Examine Class of Value in ST0
	A.5.110 FXCH: Floating-Point Exchange
	A.5.111 FXRSTOR: Restore FP, MMX and SSE State
	A.5.112 FXSAVE: Store FP, MMX and SSE State
	A.5.113 FXTRACT: Extract Exponent and Significand
	A.5.114 FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)
	A.5.115 HLT: Halt Processor
	A.5.116 IBTS: Insert Bit String
	A.5.117 IDIV: Signed Integer Divide
	A.5.118 IMUL: Signed Integer Multiply
	A.5.119 IN: Input from I/O Port
	A.5.120 INC: Increment Integer
	A.5.121 INSB, INSW, INSD: Input String from I/O Port
	A.5.121.1 Pseudo-code examples

	A.5.122 INT: Software Interrupt
	A.5.123 INT3, INT1, ICEBP, INT01: Breakpoints
	A.5.124 INTO: Interrupt if Overflow
	A.5.125 INVD: Invalidate Internal Caches
	A.5.126 INVLPG: Invalidate TLB Entry
	A.5.127 IRET, IRETW, IRETD: Return from Interrupt
	A.5.128 Jcc: Conditional Branch
	A.5.129 JCXZ, JECXZ: Jump if CX/ECX Zero
	A.5.130 JMP: Jump
	A.5.131 LAHF: Load AH from Flags
	A.5.132 LAR: Load Access Rights
	A.5.133 LDMXCSR: Load Streaming SIMD Extension Control/Status
	A.5.134 LDS, LES, LFS, LGS, LSS: Load Far Pointer
	A.5.135 LEA: Load Effective Address
	A.5.136 LEAVE: Destroy Stack Frame
	A.5.137 LFENCE: Load Fence
	A.5.138 LGDT, LIDT, LLDT: Load Descriptor Tables
	A.5.139 LMSW: Load/Store Machine Status Word
	A.5.140 LOADALL, LOADALL286: Load Processor State
	A.5.141 LODSB, LODSW, LODSD: Load from String
	A.5.141.1 Pseudo-code examples

	A.5.142 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter
	A.5.143 LSL: Load Segment Limit
	A.5.144 LTR: Load Task Register
	A.5.145 MASKMOVDQU: Byte Mask Write
	A.5.146 MASKMOVQ: Byte Mask Write
	A.5.147 MAXPD: Return Packed Double-Precision FP Maximum
	A.5.148 MAXPS: Return Packed Single-Precision FP Maximum
	A.5.149 MAXSD: Return Scalar Double-Precision FP Maximum
	A.5.150 MAXSS: Return Scalar Single-Precision FP Maximum
	A.5.151 MFENCE: Memory Fence
	A.5.152 MINPD: Return Packed Double-Precision FP Minimum
	A.5.153 MINPS: Return Packed Single-Precision FP Minimum
	A.5.154 MINSD: Return Scalar Double-Precision FP Minimum
	A.5.155 MINSS: Return Scalar Single-Precision FP Minimum
	A.5.156 MOV: Move Data
	A.5.157 MOVAPD: Move Aligned Packed Double-Precision FP Values
	A.5.158 MOVAPS: Move Aligned Packed Single-Precision FP Values
	A.5.159 MOVD: Move Doubleword to/from MMX Register
	A.5.160 MOVDQ2Q: Move Quadword from XMM to MMX register.
	A.5.161 MOVDQA: Move Aligned Double Quadword
	A.5.162 MOVDQU: Move Unaligned Double Quadword
	A.5.163 MOVHLPS: Move Packed Single-Precision FP High to Low
	A.5.164 MOVHPD: Move High Packed Double-Precision FP
	A.5.165 MOVHPS: Move High Packed Single-Precision FP
	A.5.166 MOVLHPS: Move Packed Single-Precision FP Low to High
	A.5.167 MOVLPD: Move Low Packed Double-Precision FP
	A.5.168 MOVLPS: Move Low Packed Single-Precision FP
	A.5.169 MOVMSKPD: Extract Packed Double-Precision FP Sign Mask
	A.5.170 MOVMSKPS: Extract Packed Single-Precision FP Sign Mask
	A.5.171 MOVNTDQ: Move Double Quadword Non Temporal
	A.5.172 MOVNTI: Move Doubleword Non Temporal
	A.5.173 MOVNTPD: Move Aligned Four Packed Single-Precision FP Values Non Temporal
	A.5.174 MOVNTPS: Move Aligned Four Packed Single-Precision FP Values Non Temporal
	A.5.175 MOVNTQ: Move Quadword Non Temporal
	A.5.176 MOVQ: Move Quadword to/from MMX Register
	A.5.177 MOVQ2DQ: Move Quadword from MMX to XMM register.
	A.5.178 MOVSB, MOVSW, MOVSD: Move String
	A.5.178.1 Pseudo-code examples

	A.5.179 MOVSD: Move Scalar Double-Precision FP Value
	A.5.180 MOVSS: Move Scalar Single-Precision FP Value
	A.5.181 MOVSX, MOVZX: Move Data with Sign or Zero Extend
	A.5.182 MOVUPD: Move Unaligned Packed Double-Precision FP Values
	A.5.183 MOVUPS: Move Unaligned Packed Single-Precision FP Values
	A.5.184 MUL: Unsigned Integer Multiply
	A.5.185 MULPD: Packed Single-FP Multiply
	A.5.186 MULPS: Packed Single-FP Multiply
	A.5.187 MULSD: Scalar Single-FP Multiply
	A.5.188 MULSS: Scalar Single-FP Multiply
	A.5.189 NEG, NOT: Two's and Ones' Complement
	A.5.190 NOP: No Operation
	A.5.191 OR: Bitwise OR
	A.5.192 ORPD: Bit-wise Logical OR of Double-Precision FP Data
	A.5.193 ORPS: Bit-wise Logical OR of Single-Precision FP Data
	A.5.194 OUT: Output Data to I/O Port
	A.5.195 OUTSB, OUTSW, OUTSD: Output String to I/O Port
	A.5.195.1 Pseudo-code examples

	A.5.196 PACKSSDW, PACKSSWB, PACKUSWB: Pack Data
	A.5.197 PADDB, PADDW, PADDD: Add Packed Integers
	A.5.198 PADDQ: Add Packed Quadword Integers
	A.5.199 PADDSB, PADDSW: Add Packed Signed Integers With Saturation
	A.5.200 PADDSIW: MMX Packed Addition to Implicit Destination
	A.5.201 PADDUSB, PADDUSW: Add Packed Unsigned Integers With Saturation
	A.5.202 PAND, PANDN: MMX Bitwise AND and AND-NOT
	A.5.203 PAUSE: Spin Loop Hint
	A.5.204 PAVEB: MMX Packed Average
	A.5.205 PAVGB PAVGW: Average Packed Integers
	A.5.206 PAVGUSB: Average of unsigned packed 8-bit values
	A.5.207 PCMPxx: Compare Packed Integers.
	A.5.208 PDISTIB: MMX Packed Distance and Accumulate with Implied Register
	A.5.209 PEXTRW: Extract Word
	A.5.210 PF2ID: Packed Single-Precision FP to Integer Convert
	A.5.211 PF2IW: Packed Single-Precision FP to Integer Word Convert
	A.5.212 PFACC: Packed Single-Precision FP Accumulate
	A.5.213 PFADD: Packed Single-Precision FP Addition
	A.5.214 PFCMPxx: Packed Single-Precision FP Compare
	A.5.215 PFMAX: Packed Single-Precision FP Maximum
	A.5.216 PFMIN: Packed Single-Precision FP Minimum
	A.5.217 PFMUL: Packed Single-Precision FP Multiply
	A.5.218 PFNACC: Packed Single-Precision FP Negative Accumulate
	A.5.219 PFPNACC: Packed Single-Precision FP Mixed Accumulate
	A.5.220 PFRCP: Packed Single-Precision FP Reciprocal Approximation
	A.5.221 PFRCPIT1: Packed Single-Precision FP Reciprocal, First Iteration Step
	A.5.222 PFRCPIT2: Packed Single-Precision FP Reciprocal/ Reciprocal Square Root, Second Iteration Step
	A.5.223 PFRSQIT1: Packed Single-Precision FP Reciprocal Square Root, First Iteration Step
	A.5.224 PFRSQRT: Packed Single-Precision FP Reciprocal Square Root Approximation
	A.5.225 PFSUB: Packed Single-Precision FP Subtract
	A.5.226 PFSUBR: Packed Single-Precision FP Reverse Subtract
	A.5.227 PI2FD: Packed Doubleword Integer to Single-Precision FP Convert
	A.5.228 PI2FW: Packed Word Integer to Single-Precision FP Convert
	A.5.229 PINSRW: Insert Word
	A.5.230 PMACHRIW: Packed Multiply and Accumulate with Rounding
	A.5.231 PMADDWD: MMX Packed Multiply and Add
	A.5.232 PMAGW: MMX Packed Magnitude
	A.5.233 PMAXSW: Packed Signed Integer Word Maximum
	A.5.234 PMAXUB: Packed Unsigned Integer Byte Maximum
	A.5.235 PMINSW: Packed Signed Integer Word Minimum
	A.5.236 PMINUB: Packed Unsigned Integer Byte Minimum
	A.5.237 PMOVMSKB: Move Byte Mask To Integer
	A.5.238 PMULHRWC, PMULHRIW: Multiply Packed 16-bit Integers With Rounding, and Store High Word
	A.5.239 PMULHRWA: Multiply Packed 16-bit Integers With Rounding, and Store High Word
	A.5.240 PMULHUW: Multiply Packed 16-bit Integers, and Store High Word
	A.5.241 PMULHW, PMULLW: Multiply Packed 16-bit Integers, and Store
	A.5.242 PMULUDQ: Multiply Packed Unsigned 32-bit Integers, and Store.
	A.5.243 PMVccZB: MMX Packed Conditional Move
	A.5.244 POP: Pop Data from Stack
	A.5.245 POPAx: Pop All General-Purpose Registers
	A.5.246 POPFx: Pop Flags Register
	A.5.247 POR: MMX Bitwise OR
	A.5.248 PREFETCH: Prefetch Data Into Caches
	A.5.249 PREFETCHh: Prefetch Data Into Caches
	A.5.250 PSADBW: Packed Sum of Absolute Differences
	A.5.251 PSHUFD: Shuffle Packed Doublewords
	A.5.252 PSHUFHW: Shuffle Packed High Words
	A.5.253 PSHUFLW: Shuffle Packed Low Words
	A.5.254 PSHUFW: Shuffle Packed Words
	A.5.255 PSLLx: Packed Data Bit Shift Left Logical
	A.5.256 PSRAx: Packed Data Bit Shift Right Arithmetic
	A.5.257 PSRLx: Packed Data Bit Shift Right Logical
	A.5.258 PSUBx: Subtract Packed Integers
	A.5.259 PSUBSxx, PSUBUSx: Subtract Packed Integers With Saturation
	A.5.260 PSUBSIW: MMX Packed Subtract with Saturation to Implied Destination
	A.5.261 PSWAPD: Swap Packed Data
	A.5.262 PUNPCKxxx: Unpack and Interleave Data
	A.5.263 PUSH: Push Data on Stack
	A.5.264 PUSHAx: Push All General-Purpose Registers
	A.5.265 PUSHFx: Push Flags Register
	A.5.266 PXOR: MMX Bitwise XOR
	A.5.267 RCL, RCR: Bitwise Rotate through Carry Bit
	A.5.268 RCPPS: Packed Single-Precision FP Reciprocal
	A.5.269 RCPSS: Scalar Single-Precision FP Reciprocal
	A.5.270 RDMSR: Read Model-Specific Registers
	A.5.271 RDPMC: Read Performance-Monitoring Counters
	A.5.272 RDSHR: Read SMM Header Pointer Register
	A.5.273 RDTSC: Read Time-Stamp Counter
	A.5.274 RET, RETF, RETN: Return from Procedure Call
	A.5.275 ROL, ROR: Bitwise Rotate
	A.5.276 RSDC: Restore Segment Register and Descriptor
	A.5.277 RSLDT: Restore Segment Register and Descriptor
	A.5.278 RSM: Resume from System-Management Mode
	A.5.279 RSQRTPS: Packed Single-Precision FP Square Root Reciprocal
	A.5.280 RSQRTSS: Scalar Single-Precision FP Square Root Reciprocal
	A.5.281 RSTS: Restore TSR and Descriptor
	A.5.282 SAHF: Store AH to Flags
	A.5.283 SAL, SAR: Bitwise Arithmetic Shifts
	A.5.284 SALC: Set AL from Carry Flag
	A.5.285 SBB: Subtract with Borrow
	A.5.286 SCASB, SCASW, SCASD: Scan String
	A.5.286.1 Pseudo-code examples

	A.5.287 SETcc: Set Register from Condition
	A.5.288 SFENCE: Store Fence
	A.5.289 SGDT, SIDT, SLDT: Store Descriptor Table Pointers
	A.5.290 SHL, SHR: Bitwise Logical Shifts
	A.5.291 SHLD, SHRD: Bitwise Double-Precision Shifts
	A.5.292 SHUFPD: Shuffle Packed Double-Precision FP Values
	A.5.293 SHUFPS: Shuffle Packed Single-Precision FP Values
	A.5.294 SMI: System Management Interrupt
	A.5.295 SMINT, SMINTOLD: Software SMM Entry (CYRIX)
	A.5.296 SMSW: Store Machine Status Word
	A.5.297 SQRTPD: Packed Double-Precision FP Square Root
	A.5.298 SQRTPS: Packed Single-Precision FP Square Root
	A.5.299 SQRTSD: Scalar Double-Precision FP Square Root
	A.5.300 SQRTSS: Scalar Single-Precision FP Square Root
	A.5.301 STC, STD, STI: Set Flags
	A.5.302 STMXCSR: Store Streaming SIMD Extension Control/Status
	A.5.303 STOSB, STOSW, STOSD: Store Byte to String
	A.5.303.1 Pseudo-code examples

	A.5.304 STR: Store Task Register
	A.5.305 SUB: Subtract Integers
	A.5.306 SUBPD: Packed Double-Precision FP Subtract
	A.5.307 SUBPS: Packed Single-Precision FP Subtract
	A.5.308 SUBSD: Scalar Single-FP Subtract
	A.5.309 SUBSS: Scalar Single-FP Subtract
	A.5.310 SVDC: Save Segment Register and Descriptor
	A.5.311 SVLDT: Save LDTR and Descriptor
	A.5.312 SVTS: Save TSR and Descriptor
	A.5.313 SYSCALL: Call Operating System
	A.5.314 SYSENTER: Fast System Call
	A.5.315 SYSEXIT: Fast Return From System Call
	A.5.316 SYSRET: Return From Operating System
	A.5.317 TEST: Test Bits (notional bitwise AND)
	A.5.318 UCOMISD: Unordered Scalar Double-Precision FP compare and set EFLAGS
	A.5.319 UCOMISS: Unordered Scalar Single-Precision FP compare and set EFLAGS
	A.5.320 UD0, UD1, UD2: Undefined Instruction
	A.5.321 UMOV: User Move Data
	A.5.322 UNPCKHPD: Unpack and Interleave High Packed Double-Precision FP Values
	A.5.323 UNPCKHPS: Unpack and Interleave High Packed Single-Precision FP Values
	A.5.324 UNPCKLPD: Unpack and Interleave Low Packed Double-Precision FP Data
	A.5.325 UNPCKLPS: Unpack and Interleave Low Packed Single-Precision FP Data
	A.5.326 VERR, VERW: Verify Segment Readability/Writability
	A.5.327 WAIT: Wait for Floating-Point Processor
	A.5.328 WBINVD: Write Back and Invalidate Cache
	A.5.329 WRMSR: Write Model-Specific Registers
	A.5.330 WRSHR: Write SMM Header Pointer Register
	A.5.331 XADD: Exchange and Add
	A.5.332 XBTS: Extract Bit String
	A.5.333 XCHG: Exchange
	A.5.334 XLATB: Translate Byte in Lookup Table
	A.5.335 XOR: Bitwise Exclusive OR
	A.5.336 XORPD: Bitwise Logical XOR of Double-Precision FP Values
	A.5.337 XORPS: Bitwise Logical XOR of Single-Precision FP Values

	Source Control Revision ID
	Index

