
Documentation for LZEXE, EXE file
packer.

The ecm fork of LZEXE v0.91 is based on the 2025 May free software release under the MIT
license. Refer to the LICENSE file for full attribution and usage conditions.

Hardware: PC and compatibles, 80286 or 80386 microprocessor recommended for greater
execution speed. Memory required: 128 KiB minimum to run LZEXE.

This document has been compiled on 2025-07-25.

1

Contents

Section 1: Introduction . 4

Section 2: Using LZEXE . 5

2.1 Running LZEXE . 5

2.2 Switches for LZEXE application 5

2.2.1 Switch/1 . 6

2.2.2 Switch/2 . 6

2.2.3 Switch/I . 6

2.2.4 Switch/J . 6

2.2.5 Switch/S . 6

2.2.6 Switch/O . 6

2.2.7 Switch/L . 7

2.2.8 Switch/- . 7

2.2.9 Switch// . 7

2.2.10 Switch/#XX . 7

Section 3: Tips for use . 8

Section 4: The unlzexe utility . 10

4.1 unlzexe debugging flags . 10

Section 5: COMTOEXE utility . 11

5.1 Switches for COMTOEXE . 11

5.1.1 COMTOEXE switch/0 12

5.1.2 COMTOEXE switch/1 12

5.1.3 COMTOEXE switch/2 12

5.1.4 COMTOEXE switch/A=num 12

5.1.5 COMTOEXE switch/P=num 13

Section 6: UPACKEXE utility . 14

2

Section 7: LZEXEDAT utility . 15

7.1 lzexedat.sh . 15

Section 8: From a technical point of view (for those in the know!) 16

8.1 Optimisations in the ecm fork 17

8.2 Format of the LZEXE compressed data 17

8.2.1 4 KiB variant format . 18

Section 9: LZEXE version 0.91 and other compressors 19

Section 10: The future... 20

Section 11: Warnings and wishes... 21

Section 12: Evolution of versions . 22

12.1 LZEXE ecm release 4 (future) 22

12.2 LZEXE ecm release 3 (2025-07-01) 22

12.3 LZEXE ecm release 2 (2025-06-27) 22

12.4 LZEXE ecm release 1 (2025-06-22) 23

12.5 LZEXE ecm release 0 (2025-06-17) 23

12.6 LZEXE v0.91 (1990-04-11) 23

Source Control Revision ID . 24

3

Section 1: Introduction

This software compresses EXE files, that is, EXEcutable files from the 8086 DOS PC world.
But you could tell me that a lot of software compresses EXE files better than this one, such
as the excellent PKZIP or LHARC. But the advantage of this program is that your EXE files
once compressed can be launched! And the depacking is so fast that for virtually all files, this
depacking time is negligible! In addition, the depacker does not use any additional disk space
or RAM on a virtual disk: it only uses the RAM normally reserved for the unpacked EXE file.
In addition, I have greatly optimized my depack algorithm in speed but also in efficiency: EXE
files are almost as small as the corresponding ZIP files and much more compact than the old
ARC files.

4

Section 2: Using LZEXE

2.1 Running LZEXE
It's very simple: just type in DOS:

LZEXE [switches] filename[.EXE]

where ‘filename ’ is the name of the EXE file you want to compress. The.EXE extension is
added by default. The compressed file is created in the default directory. The ‘switches ’ part
is optional and may hold any number of switches. Switches are indicated by a leading slash.
Refer to section 2.2 for the meaning of the switches.

Warning! Some files are EXE only by their name: in fact, for DOS, it is not the.EXE extension
that characterizes this type of file, it is the fact that at the beginning there are the letters ‘MZ’ or
‘ZM’ followed by a few bytes that indicate the length of the file, the memory size that it occupies,
etc. So some people do not hesitate to rename COM files to EXE, and this explains why LZEXE
refuses certain EXE files that are just renamed COM files.

But there is a method to make LZEXE accept COM files: just use the LZEXE companion tool
COMTOEXE which converts COM files to EXE files.

For added security, LZEXE does not erase your old EXE file: it renames it to *.OLD. In addition,
it creates the temporary file LZEXE.TMP which is only renamed to *.EXE after packing is
complete.

2.2 Switches for LZEXE application
The following switches are supported:

/1

Choose old v0.91 stub format

/2

Choose new stub format (default)

/I

Inline getbit code alike old stub (faster)

/J

Do not inline getbit code (slower, default)

5

/S

Stop optimisation, always use LZE3 equivalent

/O

Optimise to drop relocs or segment change (default)

/L

Allow output file that is not smaller than input

/-

No more switches, filename follows

//

Same as/-

/#XX

Force LZ signature letters to XX (for debugging)

2.2.1 Switch /1

Chooses to pack with the old v0.91 stub format. This generates a file largely compatible with
the output of LZEXE v0.91 albeit not identicalised to it. The length of the depacker stub and
the placement of its variables do exactly match.

2.2.2 Switch /2

Chooses to pack with the new stub format. (This is the default.) The current format is known as
LZX0, and comes in 8 variants. This format is not compatible with any older depackers expecting
the LZEXE v0.90 or v0.91 formats.

2.2.3 Switch /I

Inline getbit code alike old stub. Inlining the getbit code makes depacking faster at the expense
of some code size. In the old format, the code was inlined.

2.2.4 Switch /J

Do not inline getbit code. This is slower than inlining but saves some space. (This is the default.)

2.2.5 Switch /S

Stop optimisation, always use LZE3 equivalent. This disables the dropping of the relocation
table if empty, and of the segment change code if the uncompressed image size is below 40 KiB.

2.2.6 Switch /O

Optimise to drop relocs or segment change. Different variants of the LZX0 depacker stub can
be used to optimise stub size. This switch enables two different optimisations. The LZEXE
application will detect if either or both of these optimisations can be used. (This is the default.)

6

2.2.7 Switch /L

Allow output file that is not smaller than input. Usually LZEXE will delete its temporary output
file if it is at least as large as the input file. With this switch, it will only warn about the condition
but still write to the destination file.

2.2.8 Switch /-

No more switches, filename follows. This switch indicates that the next input on the command
line is a filename, even if it starts with a dash or slash. This avoids misdetecting such names as
switches.

2.2.9 Switch //

Same as/- .

2.2.10 Switch /#XX

Force LZ signature letters toXX (for debugging). TheXXcan be replaced by any two printable
ASCII bytes. The specified bytes are appended to the LZ signature. This overrides the LZ91 or
LZX0 signatures usually chosen by the current LZEXE. This switch should not be used lightly
and is intended only for debugging LZEXE. It can lead to data corruption if misused.

7

Section 3: Tips for use

For some files, compression may not work for several reasons:

• The file you specified is not a real EXE. Solution: use COMTOEXE.EXE

• The relocation table is too large. To understand this message, it's necessary to understand
the internal structure of an EXE file: such a file can span multiple segments, unlike COM
files. This is why it needs a table of values that indicates in which segment branches or
subroutine calls are made, for example. And if the file is very long, this table can be very
bulky and prevent the packer from working. However, I have allowed 16,000 relocation
addresses, which should be sufficient for all EXE files, even the largest.

• The file you specified has already been compressed with LZEXE.

Note that another file packer exists: EXEPACK.EXE from Microsoft. But it is far less
efficient than mine, and even if your EXE file is already packed with this program, LZEXE
will still be able to pack a lot. But in this case, you'll be presented with a warning message,
because there's another LZEXE companion tool: UPACKEXE, which allows you to unpack
these files, and thus the gains are even greater.

• The packing was not efficient enough and wasted space on disk: Yes, it can happen, but
generally with small EXE files (less than 2 KiB). Otherwise, you can almost always win
a few bytes. If the output file is at least as large as the input file, LZEXE will abort the
operation and delete the temporary output file, unless the/L switch was specified.

• The EXE file contains internal overlays: these are pieces of program files that are in the
EXE file but are loaded only when the main program needs them. LZEXE cannot pack
them because it would be necessary to modify the loading routines which are in the main
program, and unfortunately these routines depend on the compiler and programmer. In
version 0.91, LZEXE warns you about their presence. But in some cases, the difference
between the length of the EXE file on disk and the length of the loaded code is minimal (less
than 1024 bytes): in this case, you can still choose to pack because these may be "marks"
left by some compilers.

• In the ecm fork of LZEXE, a bug in LZEXE v0.91's relocation table format is fixed. The
format cannot cope with a relocation at the very beginning of the executable program
image, or more than one relocation at the exact same address. If the/1 switch is used,
indicating to use LZ91 format, the new LZEXE will detect executables with these and
reject them rather than producing a depacker that crashes or corrupts random memory. If
the LZX0 format is used these unusual relocations are fully supported.

• Some invalid EXE files are rejected. This includes files with zero pages, zero or negative
sized images (too large header size), or relocations addressing space beyond the end of the
image.

8

More serious is that some compressed EXE files will "crash" the machine:

• If the EXE program performs a test on its size or integrity on disk (this is very rare).

• If it contains overlays, which must be loaded afterwards and therefore must occupy fixed
positions in the file.

• For programs that run under Windows (from Microsoft): these are not real 8086 DOS
EXEs, so they will refuse to work properly when packed.

(This list is not exhaustive.)

Less serious: Some programs have configuration options that modify the EXE file (Turbo Pascal
for example). In this case, you must first configure the program, then compress it and keep an
uncompressed version so you can edit it.

9

Section 4: The unlzexe utility

The companion tool unlzexe can reverse the LZEXE compression and generate an unpacked
executable. It can handle all file formats generated by this version of LZEXE, except if the
header signature was changed using the/# switch (refer to section 2.2.10).

Note that the exact header size and the order and addressing in the relocation entries may differ
as compared to the original file before LZEXE compression. Additional data such as overlays or
lDOS iniload's entries cannot be restored either, as they are not retained by LZEXE. The memory
allocation and image size should be reproduced exactly. The relocation entries should lead to
the same result, but as mentioned may be re-ordered and use different segmented addresses.

Compressing the unlzexe output using LZEXE (same version with the same switches) should
produce exactly the same compressed file as the unlzexe input.

4.1 unlzexe debugging flags
The unlzexe tool accepts flags from the DEBUG environment variable. (%DEBUG%on DOS,
$DEBUGon Linux.) The following flags are accepted in a mask:

1

Enable all debugging output.

2

If alloc delta field is present (not in current LZX0 format) then display both the old-style
(unlzexe v0.7) and new-style resulting minimum allocation. These should match.

4

Enable listing all code snippet patterns info. This also allows to determine which
optimisations of the LZX0 format stub were used by LZEXE.

8

Enable dump of MZ EXE header of input and output. The display is in both hexadecimal
and decimal.

16

Enable listing of input and output file sizes. The display is in both hexadecimal and decimal.

10

Section 5: COMTOEXE utility

This program converts a COM (or BIN) file into an EXE file. It is the ideal complement to
LZEXE since, thanks to COMTOEXE, LZEXE can also compress COM files.

Syntax:

COMTOEXE [switches] filename[.COM] [filename2[.EXE]]

where ‘filename ’ is the name of the COM file to be converted. TheCOMextension is
automatically added. The COM file is not deleted for added security.

By specifying ‘filename2 ’, you can specify another name for the EXE file.

The ‘switches ’ part is optional and may hold any number of switches. Switches are indicated
by a leading slash. Refer to section 5.1 for the meaning of the switches.

Some additional notes:

• Some COM files may not work after conversion, because some programs need to know the
exact structure of the file they support (such as COMMAND.COM). Converting COM to
EXE changes this structure slightly.

• For the /0 switch's and /1 switch's stub the resulting EXE file needs at least 64 KiB to load.
If there is a smaller UMB and LOADHIGH is used, the resulting file will not load into the
smaller UMB even if it may be large enough to hold the executable image. The EXE file's
minimum allocation is set so that at least 64 KiB must be allocated to the process memory
block.

• Relatedly, for /0 and /1 stubs, the stack pointer is always equal to FFFEh when the control
flow is transferred to the original code.

• In the ecm fork, COMTOEXE adds a stub to the resulting EXE code. (This is the /1 switch
operation.) This stub writes a zero word on the stack, sets SI to 100h, and finally jumps to
the original entrypoint at 100h. The word on the stack may be expected by COM files so
that they can useRETNto terminate.

• There is a size limit to the files accepted by COMTOEXE.

5.1 Switches for COMTOEXE
The following switches are supported:

/0

Choose old-style no stub operation

/1

11

Choose new-style stub pushing zero (default)

/2

Choose stub that expands SP dynamically

/A=num

For /2 stub: Allocate at leastnumbytes after image

/P=num

For /2 stub: Set minimum SP offset before stub runs

5.1.1 COMTOEXE switch /0

Choose old-style no stub operation. This is the closest to the reverse of exe2bin. It prepends the
executable image with a 32-byte MZ EXE header, followed by the literal flat-format image. No
stub is appended. The initial CS:IP is equal to PSP:100h.

The minimum allocation is set so that at least 64 KiB are allocated to the process memory block,
and the initial SS:SP is equal to PSP:FFFEh. However, this stack element is not initialised to a
zero word.

5.1.2 COMTOEXE switch /1

Choose new-style stub pushing zero (default). This option causes COMTOEXE to prepend the
32-byte MZ EXE header and append an 8-byte stub behind the flat-format image. The initial
CS is equal to PSP while the initial IP points to the stub.

The minimum allocation is set so that at least 64 KiB are allocated to the process memory block,
and the initial SS:SP upon running the original entrypoint is equal to PSP:FFFEh. This stack
element is initialised to a zero word by the stub.

5.1.3 COMTOEXE switch /2

Choose stub that expands SP dynamically. A 32-byte stub is appended behind the image. This
stub reads the actual size of the process memory block from theword [PSP:2] and sets up
the SP so that SS:SP points either at PSP:FFFEh or at the last word of the process memory
block, whichever is smaller. The stack element pointed to is also initialised to a zero word by
this stub.

The minimum allocation as well as initial SP in the MZ EXE header can be set up to allow a
process memory block smaller than 64 KiB. Due to the stub, the initial SS:SP when running the
image at PSP:100h will be adjusted to be as large as PSP:FFFEh, without requiring the program
always be allocated a full 64 KiB.

5.1.4 COMTOEXE switch /A=num

For /2 stub: Allocate at leastnum bytes after image. Thenum parameter can be a decimal
number or a hexadecimal number. Hex numbers are indicated by leading ‘0x ’ or trailing ‘h’.
The specified size indicates how much space is allocated to the process memory block at least,
excluding the size of the PSP, the image, and a 128-byte reservation for the stack.

If the switch /2 stub is not in use, this switch does not take effect.

12

5.1.5 COMTOEXE switch /P=num

For /2 stub: Set minimum SP offset before stub runs. Thenum parameter can be a decimal
number or a hexadecimal number. Hex numbers are indicated by leading ‘0x ’ or trailing ‘h’.
This switch indicates the lowest value that the EXE header's SP should take. The header's
minimum allocation is set so as to allocate the stack space.

If this switch is absent or set to 0, COMTOEXE will use a heuristic to scan up to 128 bytes of
the executable image. The scan detects an initialJMP NEARor JMP SHORTand will follow
them, as long as they point to within the first 32 KiB of the input file. The scan searches for a
CMP SP,imm16instruction followed by a conditional short jump (JA, JB, JAE, or JBE). If
found, the comparison's immediate is used to determine the minimum SP.

If the calculated minimum SP is smaller than the size indicated by the/A= switch plus PSP size
plus image size plus 128, the effective minimum SP is adjusted to be at least this large.

If the switch /2 stub is not in use, this switch does not take effect.

13

Section 6: UPACKEXE utility

This program fills a major gap in the field of EXE file compressors/decompressors: It allows you
to decompress EXE files compressed with Microsoft's EXEPACK.EXE and then recompress
them with LZEXE, so that the gains are much greater. Programs reduced with EXEPACK are
very common: practically all programs created with MSC (Microsoft C) are compacted with
it, surely to hide its lack of optimisation! But the algorithm used, although very fast, cannot be
compared with that of LZEXE, which performs much better.

Additionally, and this is why I created this unpacker, EXEPACK compacts the EXE file's
relocation table and makes it inaccessible to LZEXE, which can no longer compress it to its full
capacity. Thus, LZEXE's performance is slightly slower.

Syntax:

UPACKEXE filename[.EXE]

where ‘filename ’ is the name of the file to unpack. It is renamed *.OLD. The new EXE file
is created in the current directory under the name UPACKEXE.TMP and is renamed at the end.

14

Section 7: LZEXEDAT utility

The LZEXEDAT utility compresses a data file into a raw compressed stream of the LZEXE
format (refer to section 8.2). It does not parse an MZ header and the output file also doesn't have
any headers at this time.

The utility is used in the following way:

lzexedat [switches] infilename outfilename

The following switches are supported:

-b

Run a breakpoint immediately before calling LZCOMP.

-v

Display verbose output instead of a single line.

-4

Use the 4 KiB window variant encoding. This encoding is incompatible with the default
(8 KiB window) encoding. The recipient must know which encoding was used.

-e

Currently unused but accepted.

--

Stop parsing of switches, all subsequent parameters are filenames.

Note that an empty input file is encoded as if it contained a single NUL byte.

7.1 lzexedat.sh
This bash script is provided to resolve leading dotdot in pathnames and call dosemu2 to run
LZEXEDAT. The filenames should be short but especially not contain any blanks. Switches
must be specified before the filenames.

15

Section 8: From a technical point of view (for
those in the know!)

The compression algorithm I made is based on the famous Lempel Ziv method using a "circular"
buffer (ring buffer) and a method of finding repetitions of byte sequences by trees. The coding of
the position and length of the strings that repeat is optimized by an additional algorithm inspired
by the Huffman coding method. Unpacked literal bytes are sent as is in the file. An additional
compression algorithm (like "Adaptive Huffman" (see LHARC) or with Shanon-Fano trees (see
PKZIP)) would have required a longer depacking time and above all a more efficient depacker
that is more complex and longer, which could actually make the compressed EXE file longer.

The depacker is located at the end of the EXE file and is 395 bytes in size long for version 0.90
and 330 bytes for version 0.91. In the ecm fork the depacker is between 208 and 305 bytes in
size. The depacker must:

• Check the CRC to make sure no one has modified it (useful against viruses). If yes,
display the message: ‘CRC Error ’. This option was removed in LZEXE v0.91 because
it unnecessarily lengthens the file EXE and the depack time. Furthermore, the CRC check
was only performed on the depacker.

• Move to the top of RAM, then move the compressed data to leave some space for the EXE
image.

• Depack the code, checking that it is correct, and also adjust segments if you exceed 64 KiB
(which caused me problems in terms of speed).

In the LZX0 format of the ecm fork, the segment change handling can be omitted in case
the original executable image was smaller than 40 KiB, saving some space for otherwise
unused code in the depacker.

• Depack the relocation table, and update the relocation addresses in the EXE image. This
is where LZEXE v0.91 was changed: the relocation table is much better compressed.

In the LZX0 format of the ecm fork, the relocation table changed slightly. This supports a
wider range of relocation entries.

Further, LZX0 format can be used with the relocation table handling omitted in case the
original EXE file had an empty relocation table.

• Before the subsequent transfer, set up AX (FCB drive validity) and DS, ES (both point to
the PSP) the same way we received them from the DOS's program loader.

• Launch the program by updating CS,IP,SS,SP

That's all!!!

16

This depacker is a small masterpiece of 8086 assembler programming in itself: needless to say,
it took quite a long time to develop. But the packer also posed quite a few problems for me,
particularly when it came to updating all the pointers that the depacker uses later.

8.1 Optimisations in the ecm fork

I optimised the depacker some. In addition to the universal optimisations, LZX0 format can
select one of eight variants of the depacker:

• With or without relocation table.

• With or without segment change handling.

• With getbit handling inlined or in a function.

The /O switch enables the optimisation of the relocation table and segment change code,
whereas the/S switch stops these optimisations. The/J switch disables inlining getbit whereas
the/I switch enables it.

8.2 Format of the LZEXE compressed data

The format of the LZEXE compressed data is a byte-based stream. The first word loaded from
the stream is a tag word of bits. The tag bit counter is initialised to 16. A tag bit is consumed by
shifting the tag word right and reading the shifted-out bit as the tag bit output. When the 16th
bit is consumed, a new tag word of bits is loaded, and the tag bit counter is reset to 16.

The following bit sequences in the tags are known:

1

A literal byte command. The byte is read from the compressed stream.

0 0

A short (2 to 5 bytes) match command, with 8 bits of distance. Two more tag bits are read,
the first being the high bit for the length and the second being the low bit. These two bits
form a number in the range 0 to 3. After reading the two tag bits, 2 is added to the read value
to retrieve a length in the range 2 to 5 bytes. Then one byte is read from the compressed
stream. It is interpreted as a two's complement negative 8-bit number (0FFh means -1,
down to 00h means -256) giving the distance.

0 1 length=001b to 111b

A displacement/length combined word is read. The low three bits of the high byte indicate
the length value. Values 1 to 7 indicate a medium (3 to 9 bytes) match command, 2 is added
to the read value. The low byte and the high five bits of the high byte indicate the two's
complement negative 13 bits distance (0F8FFh means -1, 0000h means -8192).

0 1 length=000b byte=00h

The combined word's length is all-zeroes. A subsequent byte is read from the compressed
stream. If it is zero, this is a marker for the end of the compressed stream. The distance is
ignored.

17

0 1 length=000b byte=01h

After the combined word's length is all-zeroes, the subsequent byte read is equal to one.
This is a marker to normalise pointers. The distance is ignored. This marker should be
placed at about every 40 KiB of uncompressed input data by the compressor. As 40 KiB
must compress to 40 KiB / 8 bit/byte * 9 encoded bit/literal byte = 45 encoded KiB or
less, both the source pointer and destination pointer needn't be normalised other than in
response to this marker.

The source pointer can be normalised in the naive way: Isolate the low 4 bits in si and shift
right the high 12 bits from si by 4 bits, then add this value to ds.

The destination pointer must be normalised differently. It must be handled so that di ends
up in the range 8 KiB to 13 KiB. The original online depacker will isolate the low 4 bits of
di and add 2000h to them (resulting in 8192 to 8207). The high 12 bits from di are shifted
right by 4 bits, then 200h is subtracted from this value (which cannot underflow), then this
value is added to es.

0 1 length=000b byte > 01h

This is a long match command. The last byte read indicates a value in the range 2 to 255.
One is added to this byte, leading to a length of 3 to 256. The distance of -1 to -8192 is
used in the same way as for a medium match command.

After any command other than the end marker, the depacker loops back to the main depack loop
which again reads the first tag bit to decode the next command.

The match commands may match with a negative match distance the absolute value of which is
below the match length. In this case the depacker has to process the match command so that the
initial prefix is replicated into the depacked output as often as needed to fulfil the command.

The very first command always has to be a literal command, so the very first bit (lowest bit of
first byte) of the compressed stream is always a 1. Technically, the format can encode an empty
output file in which case the first command is not a literal command. However, in practice an
empty input file happens to be encoded into a literal command containing a NUL byte, followed
by the end of stream command.

8.2.1 4 KiB variant format

The LZEXEDAT utility supports encoding in a different variant. This is selected by passing
the-4 switch to it. The two variants are incompatible, and cannot be distinguished easily from
inspecting the compressed stream.

In this variant, the match window that can be addressed by medium and long match commands
is only 4 KiB rather than 8 KiB. The displacement/length combined word only uses the low byte
and the high four bits (rather than five) of the high byte to encode the 12-bit distance. Therefore,
the length is encoded in four (rather than three) bits.

Similarly to the original variant, a length of zero (0000b) indicates an escape for long match,
segment change, or end of stream commands. The length for medium match commands is
encoded as 0001b to 1111b (1 to 15), so a medium match command can have a length of 3 to
17 bytes.

18

Section 9: LZEXE version 0.91 and other
compressors

PKARC (latest version): LZEXE performs much better, as "crunching" (aka shrinking for
PKZIP) is an outdated algorithm...

PKZIP v0.92: LZEXE does better in almost all cases.

PKZIP v1.02: On large files, LZEXE does better. otherwise, the difference is quite small.

LHARC v1.01: It does better than LZEXE with "freezing" on small files.

LARC: LZEXE does better.

Important Notes:

• You can't really compare what LZEXE does with other packers since in the EXE files
compressed by my software there is also a depacker that launches the EXE by itself. The
other compressors can make "self-extracting" files, but they depack to disk, are slow and
add several tens of KiB to the compressed files (except for LARC and LHARC which only
add 1 or 2 KiB, but which only depack on disk unfortunately).

• In almost all cases, the compressors I mentioned will not be able to further pack a file
already reduced with LZEXE, which shows its efficiency. Only LHARC manages to save
a few bytes.

UPX: upx-ucl --8086 --lzma does about 6% better than LZEXE. Like LZEXE it
produces files with an online depacker stub in the compressed executable file.

19

Section 10: The future...

• I'm also thinking about an automatic documentation depacker like README.COM or
LIST.COM, which would be very convenient, and maybe I'll make one.

• Finally, I hope to make a "universal" packer like PKZIP or LHARC, which is slower than
LZEXE when it comes to depacking, but performs much better than them.

20

Section 11: Warnings and wishes...

I hope that LZEXE and the EXE files compressed by it will be widely broadcast which will
encourage me to make other versions more quickly...

I decline all responsibility in the event of loss of information caused by LZEXE. But rest assured,
the algorithms are reliable and I don't think there are many bugs.

Warning! I do not recommend compressing and distributing commercial software protected by
copyright: the authors may be displeased...

But if you're making a FREEWARE, SHAREWARE, or even a commercial program, nothing's
stopping you from compressing it with LZEXE, and I even recommend it:

• Your EXE files will be smaller, and your compiled programs will look like they're made in
assembler. What will your competitors say when they see programs that do the same thing
as theirs but are 30% smaller? Plus, you'll be able to fit more programs on floppy disk (and
hard disk), because we always need more mass storage...

• Compression is an excellent form of coding that can prevent unsavory people from
modifying messages or seeing your secret algorithms unless they disassemble the depacker,
which might not be very easy, I'm telling you!

There you go, hoping that this software will be useful to you and that it does not have too many
bugs!

21

Section 12: Evolution of versions

12.1 LZEXE ecm release 4 (future)
• Implement second name parameter to lzexe which gives the directory to which to write the

temporary and final output files.

• Optimise depacker stub some more.

• Adjust minimum allocation in upackexe.

• In upackexe do not hardcode 512 bytes per header.

• Add upackexe debugging output by setting the%DEBUG%variable.

• Fix some calculations and displayed results in infoexe to work with amount of bytes
exceeding 16 bits.

12.2 LZEXE ecm release 3 (2025-07-01)
• Add comtoexe stub 2 (/2 switch) and /A= and /P= switches to create a smart .EXE file

which can run with below 64 KiB of memory but will dynamically extend SP to the actual
size.

• Add comtoexe switches /0 and /1 for selecting no stub or short stub.

• Fix UPACKEXE if a relocation with offset 0FFFFh appears in the exepacked relocation
table.

• Translate and update this manual.

• unlzexe dot mode: If second parameter is a lone dot, only calculate everything without
writing to any file.

12.3 LZEXE ecm release 2 (2025-06-27)
• Add formats without inlined getbit function. This is purely a speed vs size tradeoff.

• Add debugging outputs to unlzexe, selected using the DEBUG environment variable.

• Make unlzexe able to restore the minimum allocation size of the original unpacked
executable file, even if alloc delta field absent.

• Add formats without segment change handling.

• Add format without relocation table.

• Flush the pipeline for depacker's Self Modifying Code.

22

12.4 LZEXE ecm release 1 (2025-06-22)
• Do not calculate percentages with the 8087 FPU.

• Port all Pascal source texts to allow building with FreePascal, i8086 DOS target.

• Add alloc delta field to depacker stub so unlzexe works better.

• Detect invalid relocations (past image).

• Add new relocation table format which allows zero-difference relocations.

• Add new depacker, optimise it, and pass along the value in AX from the DOS program
loader to the depacked program.

• Check for nonzero positive image size.

• If unknown LZ signature is found, display it.

• Make unlzexe compile for either 8086 DOS (gcc ia16) or amd64 Linux (gcc).

• Add unlzexe from LZEXE v0.91e, the former is Public Domain.

• Port packer to NASM.

• In comtoexe add a stub to set up a zero word on top of the stack so that programs depending
on it won't break.

• Detect and warn about invalid amount last page bytes field (> 512) and display a hint on
lDOS iniload if the low byte of this field equals 0EBh.

• Detect and reject zero in EXE header amount pages field.

• Translate most of the main LZEXE tool to the english language.

12.5 LZEXE ecm release 0 (2025-06-17)
• Reject zero-difference relocations when packing a file with the LZ91 format.

• Display remaining file size and percentage.

• Port depacker to NASM.

12.6 LZEXE v0.91 (1990-04-11)
• The hyphen ‘- ’ was not accepted in file names, this has been corrected.

• LZEXE signals the presence of internal overlays.

• LZEXE indicates whether the file has already been packed with EXEPACK by Microsoft.

• A bug in version 0.90 caused EXE files to take up too much memory: this has been fixed.

• Relocation table compression has been improved.

• CRC check has been removed.

• Decompressor size reduced from 395 to 330 bytes.

23

Source Control Revision ID

hg f9d073723a6a, from commit on at 2025-07-25 09:23:56 +0200

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/lzexe/rev/f9d073723a6a

24

https://hg.pushbx.org/ecm/lzexe/rev/f9d073723a6a

	Documentation for LZEXE, EXE file packer.
	Contents
	Section 1: Introduction
	Section 2: Using LZEXE
	2.1 Running LZEXE
	2.2 Switches for LZEXE application
	2.2.1 Switch /1
	2.2.2 Switch /2
	2.2.3 Switch /I
	2.2.4 Switch /J
	2.2.5 Switch /S
	2.2.6 Switch /O
	2.2.7 Switch /L
	2.2.8 Switch /-
	2.2.9 Switch //
	2.2.10 Switch /#XX

	Section 3: Tips for use
	Section 4: The unlzexe utility
	4.1 unlzexe debugging flags

	Section 5: COMTOEXE utility
	5.1 Switches for COMTOEXE
	5.1.1 COMTOEXE switch /0
	5.1.2 COMTOEXE switch /1
	5.1.3 COMTOEXE switch /2
	5.1.4 COMTOEXE switch /A=num
	5.1.5 COMTOEXE switch /P=num

	Section 6: UPACKEXE utility
	Section 7: LZEXEDAT utility
	7.1 lzexedat.sh

	Section 8: From a technical point of view (for those in the know!)
	8.1 Optimisations in the ecm fork
	8.2 Format of the LZEXE compressed data
	8.2.1 4 KiB variant format

	Section 9: LZEXE version 0.91 and other compressors
	Section 10: The future...
	Section 11: Warnings and wishes...
	Section 12: Evolution of versions
	12.1 LZEXE ecm release 4 (future)
	12.2 LZEXE ecm release 3 (2025-07-01)
	12.3 LZEXE ecm release 2 (2025-06-27)
	12.4 LZEXE ecm release 1 (2025-06-22)
	12.5 LZEXE ecm release 0 (2025-06-17)
	12.6 LZEXE v0.91 (1990-04-11)

	Source Control Revision ID

