IDOS boot documentation

2020 by E. C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2024-01-02.



Contents

Section 1: IDOS boot protocols

1.1 Sector to iniload protocol
1.1.1 File properties
1.1.2 Signatures
1.1.3 Load Stack Variables (LSV)
1.1.4 Memory map
1.1.5 Load filename in the boot sector
1.1.6 Query patch support

1.2 Iniload to payload protocol
1.2.1 Stack
1.2.2 Extended BIO Parameter Block (EBPB)
1.2.3 Load Stack Variables (LSV)
1.2.4 Load Data 1 (LD)
1.2.5 Load Command Line (LCL)

1.3 Application mode protocol

1.4 Device mode protocol

Section 2: DRLoad boot protocols

2.1 Sector to drload protocol
2.1.1 Overview

2.2 DRLoad to payload protocol

Source Control Revision ID



1.1

1.11

1.1.2

Section 1: IDOS boot protocols

Sector to iniload protocol

The iniload kernel is loaded to an arbitrary segment. The segment must be at least 60h. Common
choices are 60h, 70h, and 200h. At least 1536 bytes of the file must be loaded. Current loaders
will load at least 8192 bytes if the file is as large or larger than that. The entrypoint is found by
applying no segment adjustment (0) and choosing the offset 400h (1024).

File properties

The file must be at least 4096 bytes long. This is now required, beyond the former lower bound
of 1536 bytes, to support an optimisation of the FAT12 and FAT16 boot sector loaders. The
IDebug loader and the FAT32+FSIBOOQOT loader currently retain the 1536 bytes limit.

The file may allow multi-use as a flat .COM format executable, flat .SYS format device driver,
or MZ .EXE format executable and/or device driver. It is also valid to append arbitrary sized
data such as a .ZIP archive.

The file needs to be placed in the root directory for the boot sector loaders. The IDebug loader
allows to load a file from any subdirectory and this is also allowed. The file may be fragmented
in any part. The file data may be located anywhere in the file system. The supported cluster sizes
should be between 32 Bytes and 2 MiB, inclusive. The sector size should be between 32 Bytes
and 8 KiB, inclusive.

Signatures

At offset 1020 (3FCh) there is the signatuli@ ‘. Behind that there are two bytes with printable
non-blank ASCII codepoints. Currently the following signatures are defined:

‘IDOS’
IDOS kernel (not yet in use)
‘IDRx’
RxDOS kernel
‘IDFD’
FreeDOS kernel in fdkernpl stage
‘IDDR’
Enhanced DR-DOS single-file kernel in drkernpl stage

3



1.1.3

‘IDeb’

IDebug
‘IDDb’

IDDebug (debuggable IDebug)
‘IDbC’

ICDebug (conditionally debuggable IDebug)
‘IDTP’

IDOS test payload kernel (testpl.asm)
‘IDTW

IDOS test result writer kernel (testwrit.asm)

Load Stack Variables (LSV)

Under this protocol, the pointess:bp ’is passed. It points to a boot sector with (E)BPBp*

must be even for compatibility with older iniload (before 2023-March). The stack pointer must
be at mostbp - 10h . Below the pointed to location there live the Load Stack Variables.
These follow this structure:

struc LOADSTACKVARS, -10h

IsvFirstCluster: resd 1

IsvFATSector: resd 1

IsvVFATSeg: resw 1l

IsvLoadSeg: resw 1

IsvDataStart: resd 1
endstruc

IsvFirstCluster
(FAT12, FAT16) Low word gives starting cluster of file. High word uninitialised.
(FAT32) Dword gives starting cluster of file.
(else) Should be zero.

IsvFATSector

(FAT16) Low word gives loaded sector-in-FAT. -1 if none loaded yet. High word
uninitialised.

(FAT32) Dword gives loaded sector-in-FAT. -1 if none loaded yet.
(FAT12, else) Unused.
IsVFATSeg
(FAT16, FAT32) Word gives segment of FAT buffer if word/dword [ISvFAT Sector] = -1.

4



(FAT12) Word gives segment of FAT buffer. Zero if none. Otherwise, buffer holds entire
FAT data, up to 6 KiB.

IsvLoadSeg

Word points to segment beyond last loaded paragraph. Allows iniload to determine how
much of it is already loaded.

IsvDataStart
Dword gives sector-in-partition of first cluster's data.

An LSV extension allows to pass a command line to the kernel. The base pointer must be at least
‘114h’ then. The stack pointer must be at mdsp‘ - 114h ’then. This follows the structure
like this:

IsvclSignature equ "CL"
IsvclBufferLength equ 256

struc LSVCMDLINE, LOADSTACKVARS - IsvclBufferLength - 4
IsvCommandLine:
.Start: resb IsvclBufferLength
.Signature:  resw 1
IsvExtra: resw 1l
endstruc

IsvCommandLine.start

Command line buffer. Contains zero-terminated command line string.
IsvCommandLine.signature

Contains the signature valu€L’ if command line is given.
IsvExtra

Used internally by iniload. Space for this must be reserved when passing a command line.

If no command line is passed then either the stack pointer mudigbe ‘10h ', or ‘bp -
12h’, or the word in the IsvCommandLine.signature variabd®id [ss:bp - 14h] )
must not equal the strin@CL.

* dosemu2's RxDOS.3 supportsedp ‘= bp - 10h ’

» Idosboot boot.asm (FAT12/FAT16) loader makes sure not to pass the variable with the
content "CL". Refer to placeholder and DIRSEARCHSTACK_CL_FIRST uses in the
source.

» |dosboot boot32.asm (FAT32) loader uses the variable for an ‘entries per sector’ value
which is always a power of two and always below-or-equal 100h.

» |Debug with protocol optionsmdline=0 push_dpt=0  setsSp = bp - 10h ’

5



1.1.4

1.1.5

1.1.6

Memory map

The initial loader part that is loaded must be loaded at above or equal to linear 00600h. The FAT
buffer segment (if used) must also be stored at above or equal to linear 00600h. The stack (which
should extend at least 512 bytes bel@s:bp ’) and boot sector (pointed to bgs:bp ', at

least 512 bytes length) should also be stored at above or equal to linear 00600h.

There is an additional memory area, the Low Memory Area top reservation, which should be
unused by the load protocol at handoff time but be at least 20 KiB in size. Itis located below the
usable Low Memory Areatop. Thatis, directly below the EBDA, RPL-reserved memory, video
memory, or otherwise UMA. This area is reserved in order to facilitate initial loader operation.

None of the memory areas may overlap. This does not include the FAT buffer in case it is
uninitialised.

Load filename in the boot sector

The boot sector may be expected to contain a valid 8.3 format (blank-padded FCB) filename
in the area of the boot sector starting behind the (E)BPB, extending up to below the boot
sector signature word with value AA55h (at offset 510 in the boot sector). This name should
not contain blanks other than trailing in the file name portion or trailing in the file extension
portion. It should consist of printable ASCII codepoints. That is, byte values between 20h and
7Eh inclusive. It should not consist of eleven times the same byte value. Additional FAT Short
File Name restrictions may be assumed.

Although aloader should not depend on this for crucial operation, it may want to detect the kernel
name it was presumably loaded from for informational or optional purposes. The canonical
implementation of this is currently the functidimdname ’inthetestpl.asm testpayload
kernel. It is found within the ldosboot repo. This handling is based on the function of the same
name in the instsect application.

Query patch support

The Idosboot repo includes a patch Script for IDebug (.sld) file which allows to patch the initial
loader stage. The patches concern handling of the CHS geometry detection, and whether LBA
or CHS access is used. There are several legacy patch sites in which patch.sld can directly patch
the initial loader's code.

However, the preferred way is to find the query patch sequence. It should appear within the first
1536 bytes, that is within the part of the initial loader that must be loaded. This is the sequence:

8A5640 mov dl, byte [bp + 40h]
B8xxyy mov ax, yyxxh
84D2 testdl, dl

7902 jns @F
86C4 xchg al, ah
@Q@:

The immediate word of thenov ax instruction is to be patched. The sequence should be
scanned for without regard as to what the current contents of this word are.

The following flag values are used:

* 01h Force CHS access, do not detect LBA support with 13.41

6


https://hg.pushbx.org/ecm/ldosboot/file/e0c17723f953/testpl.asm#l668
https://hg.pushbx.org/ecm/instsect/file/53e4327aacd6/instsect.asm#l2442

1.2

1.2.1

1.2.2

1.2.3

* 02h Force LBA access, do not detect LBA support with 13.41
* 04h Force use of BPB's CHS geometry, do not detect with 13.08

» 80h Used by IDebug. If this value is set for the load unit, then IDebug will make use
of the other flags set up for that unit. The corresponding flags will be saved in IDebug's
load_unit_flags. This affects only the load unit (LD in IDebug terminology), which suffices
to pass commands in the startup Script for IDebug.

The flag 01h takes precedence over 02h if both are set.

The low byte (xxh) is used in case the loader loads from a diskette unit, that is a unit number
below 80h. The high byte (yyh) is used otherwise, in case the loader loads from a hard disk unit,
that is a unit number above-or-equal 80h.

Iniload to payload protocol

The payload is loaded to an arbitrary segment. The segment must be at least 60h. The entire
payload must be loaded. The size of the payload is determined at iniload build time. The
entrypoint is found by applying a segment adjustment and choosing an offset. The segment
adjustment is specified at iniload build time by the numeric defE¥EC_SEGMEN(@efault

0), and the offset by the defineEXEC OFFSETdefault 0).

Stack

The stack must allocate atleast 256 bytes of space lssmp . This space must not underflow,

ie sp is at least 256 (100hgp should not be higher than 8192 (2000h. is typically equal

tosp + 120h . bp must be below or equal 7000h. The stack startingsad up to below

ss:bp + 21Ch should be in the area between the paragraphs indicated by the load top lower
limit and memory top upper limit. (Refer to LOADDATA fields IdLoadTop and IdMemoryTop.)
Subsequent stages like inicomp, fdkernpl, nullpl, and kernels like IDebug and testpl may depend
on these characteristics.

Extended BIO Parameter Block (EBPB)

Above the LSVss:bp pointsto an EBPB and surrrounding boot sector. Note that this is always

a FAT32-style EBPB. If the filesystem that is loaded from is not FAT32, and is therefore FAT16
or FAT12, then the FAT16/FAT12 BPBN structure is moved up. It is placed where the FAT32
BPBN is usually expected. In this case, the entire boot sector contents behind the BPBN are also
moved up by the size of the FAT32-specific fields. The FAT32-specific fields are filled with zeros,
except for the FAT32 ‘sectors per FAT field. It is filled with the contents of the FAT16/FAT12
‘sectors per FAT field.

Note that a FAT32 file system is determined by whether the FAT12/FAT16 ‘sectors per FAT’
BPB field is zero. If it is zero, then the EBPB is used unchanged from the boot sector. If it
is nonzero, the FAT12/FAT16 BPB is expanded into an EBPB as described here. To do the
expansion, typically the BPB New fields of the FAT12/FAT16 BPB as well as the trailing boot
sector contents (up to below offset 512) are moved up the 1Ch bytes to open the gap for use by
the FAT32-specific EBPB fields. That means the boot sector trailer reaches up to below offset
21Ch (540).

Load Stack Variables (LSV)

Refer to section 1.1.3.



1.2.4 Load Data 1 (LD)
Below the LSV, iniload passes the LOADDATA (1) structure.

struc LOADDATA, LOADSTACKVARS - 10h
[dMemoryTop: resw 1
IdLoadTop: reswl
ldSectorSeg: resw 1
[dFATType: resb1l
IdHasLBA: resb 1
IdClusterSize: resw 1
IdParaPerSector:resw 1
ldLoadingSeg:
IdQueryPatchValue:

resw 1

IdLoadUntilSeg: resw 1

endstruc

[dMemoryTop

Word. Segment pointer to behind usable memory. Points at the first of the EBDA, RPL-
reserved memory, or video memory or otherwise UMA. Indicates how much memory may
be used by atypical kernel. (IDebug detects the EBDA to move that below where itinstalls.)

IdLoadTop

Word. Segment pointer to lowest IDOS boot memory in use. All memory between linear
600h and the segment indicated here is usable by the payload. Only the payload itself is
stored inthis area. The other buffers, stack, and structures passed by iniload must live above
this segment.

IdSectorSeg

Word. Segment pointer to an 8 KiB transfer buffer. Itis insured that this buffer does not cross
a 64 KiB boundary. This may be needed by some disk units. The buffer is not initialised
to anything generally.

IdFAT Type

Byte. Indicates length of FAT entry in bits. 12 indicates FAT12, 16 FAT16, 32 FAT32. Itis
planned to allow zero for non-FAT filesystems.

IdHasLBA

Byte. Only least significant bit used. Bit on indicates LBA extensions available for the load
disk unit. Bit off indicates LBA extensions not available.

IdClusterSize

Word. Contains amount of sectors per cluster. Unlike the byte field for the same purpose
in the BPB, this field can encode 256 (EDR-DOS compatible) without any masking. May
be given as zero for non-FAT filesystems.

IdParaPerSector



1.2.5

1.3

Word. Contains amount of paragraphs per sector. Must be a power of two between 2 (32
B/s) and 200h (8192 B/s). May be given as zero for non-FAT filesystems.

ldLoadingSeg

Word. Internally used by iniload. Available for re-use by payload. However,
IdQueryPatchValue re-uses the same field.

IdQueryPatchValue

Word. Passes the query patch value from the initial loader. This provides an opportunity to
patch a well-known site in the initial loader to change its behaviour in some ways. Near the
end of its operation, the initial loader passes along this value in this variable for the next
stage to use.

IdLoadUntilSeg

Word. Internally used by iniload. Available for re-use by payload.

Load Command Line (LCL)
Below the LOADDATA structure, iniload passes the LOADCMDLINE structure.

IsvclBufferLength equ 256

struc LOADCMDLINE, LOADDATA - IsvcIBufferLength
[dCommandLine:
.Start: resb IsvclBufferLength

endstruc

This buffer is always initialised to an ASCIZ string. At most 255 bytes may be initialised to
string data. At most the 256th byte is a zero.

If the first word of the buffer is equal to OFFOOh, that is there is an empty command line the
terminator of which is followed by a byte with the value OFFh, then no command line was

passed to iniload. Currently IDebug can pass a command line to iniload when loading with its
IDOS, RxDOS.2, RxDOS.3, or FreeDOS protocols. When iniload is loaded as a Multiboot1 or
Multiboot2 specification kernel, it is also assumed that a command line can be passed.

Application mode protocol

Aniniload payload can be loadable as a DOS application. In this case the iniload MZ executable
header will point to the payload. The _IMAGE_EXE define to iniload will indicate support for
this if it is enabled.

The entire payload will be loaded as a program image just behind the PSP. The entrypoint
is determined by the _IMAGE_EXE_CS and _IMAGE_EXE_IP defines. These default to a -
16:256 + 64 entrypoint. Minus 16 means the code segment will be equal to the PSP, just like
for flat .COM style executables. The 256 in the instruction pointer calculation skips past the
PSP. Thus, the default _IMAGE_EXE_IP will enter the payload at offset 64 counting within the
payload.

Likewise IMAGE_EXE_SS and IMAGE_EXE_SP specify the initial stack. They default to -
16:0FFFEh, mimicking flat .COM style load somewhat. (However, iniload doesn't get a chance

9



1.4

to push a zero word onto this stack before the first payload is run. Adding a nullpl, checkpl, or
inicomp stage can be used to provide this.)

_IMAGE_EXE_AUTO_STACK defaults to zero. Ifitis nonzero itindicates to use the automatic
stack placement. Its value, which defaults to 2048 if defined as empty, determines how
large the stack should be (at least). The explicit IMAGE_EXE_SS and IMAGE_EXE_SP
are ignored if the automatic stack placement is enabled. The automatic stack is placed into
its own segment, stretching from ss:0 to ss:sp. The stack pointer will match the value of

_IMAGE_EXE_AUTO_STACK.

_IMAGE_EXE_MIN indicates how much memory to allocate to the process at least. It defaults
to 65536 (64 KiB). Itis actually used inthe IMAGE_EXE_MIN_CALC define to calculate the
minimum allocation value. IMAGE_EXE_MIN_CALC is not a numdef, but can be overridden
from the assembler command line. This is the default content of this define:

%define IMAGE_EXE_MIN_CALC\
((C_IMAGE_EXE_MIN \

- (payload.actual_end - payload) \

- 256\

+ IMAGE_EXE_AUTO_STACK) + 15) & ~15)

_IMAGE_EXE_MAX is a define that defaults to OFFFFh. If it is nonzero it is used directly as
the maximum allocation value. OFFFFh indicates to allocate the Iargest memory block to the
process, just like for flat .COM style load. If it is zero, then the maximum allocation field is set
to equal the minimum allocation field.

Most of the stages of iniload payloads can pass through the execution control flow from being
loaded as a payload to hand off to their payload. This includes the nullpl, checkpl, and inicomp
stages. Each stage must be configured appropriately, enabling the _IMAGE_EXE define and
setting up the other defines appropriately. These three stages expect -16:256 + 64 or -16:256
entrypoints as input for application mode, but their output entrypoints can be configured using
the defines listed above.

The registers ds, es, and ax are passed through from iniload, nullpl, checkpl, or inicomp to
each one's payload. The two segment registers will point to the PSP. The ax register contains
information on the validity of the drives of the two default FCBs.

The iniload MZ executable header's relocation table is currently always empty. The application
has to implement relocations by itself.

_SECOND_PAYLOAD_EXE allows to include a different payload that is to be used
as the application mode program image. In this case the main iniload payload
(_PAYLOAD_FILE) is used only for boot loaded mode. A different file can be specified with
_SECOND_PAYLOAD_FILE. Each _IMAGE_EXE_* define has an equivalent define named
according to the _SECOND_PAYLOAD_EXE_* scheme.

Device mode protocol

The device mode load of the payload shares its program image with the application mode. The
very beginning of the image must contain a device header. (The first device header, if more than
one exist.)

The inicomp, nullpl, and checkpl stages expect certain offsets for the entrypoints: 18 for the
strategy, and 22 for the interrupt. Each passthrough stage must be configured with the appropriate

10



device name and device attributes contents, and with the _DEVICE define enabled. (These
defines are not needed for iniload. However, _IMAGE_EXE is required.)

The inicomp stage uses the request header's break address as passed by DOS to determine how
much memory is available to the depacker. This requires MS-DOS version 5 compatibility.

11



2.1

211

Section 2: DRLoad boot protocols

The drload stage is a replacement for IDOS's iniload initial loader. It does away with most of
the entrypoints supported by iniload, including the native IDOS load protocol. This allows it to
drop most of the file system and disk read related code that is included in iniload.

The motivation for drload was to minimise the overhead for a compressed Enhanced DR-DOS
single-file kernel, hence the name. This allows the single-file kernel to be smaller than the sum
of the two files of the prior build of a double-file kernel.

Sector to drload protocol

The sector to drload protocol is either the FreeDOS load protocol or the original Enhanced DR-

DOS load protocol (minus the need for a second file). Both of these share the fact that the prior
loader has to load the entire file of the drload stage, so that no temporary file system support is
needed in the drload stage or later in the subsequent kernel stages.

That does imply that the kernel file may not carry appended data of arbitrary size, as the entire
file has to fit in the space within the Low Memory Area allocated by the prior loader.

Overview
The FreeDOS and Enhanced DR-DOS load protocols share:
* The entire file is loaded to a segment boundary
* The stack must not overlap the loaded file data
* The load unit can also be found in a BPB New field of the passed boot sector
* The hidden sectors can be found in a BPB field of the passed boot sector
They differ in the following details:
* FreeDOS:
* File loaded at linear address 600h, entered at 60h:0
» SS:BP -> boot sector with BPB (FAT12/FAT16) or EBPB (FAT32)
* BL =load unit
* Enhanced DR-DOS:
* File loaded at linear address 700h, entered at 70h:0
« DS:BP -> boot sector with BPB (FAT12/FAT16) or EBPB (FAT32)
* DL =load unit

12



2.2 DRLoad to payload protocol
The drload to payload protocol only sets up:
* The boot sector with FAT32 EBPB or expanded FAT32-style FAT12/FAT16 BPB
* The stack at the high end of the Low Memory Area
e The Load Command Line
* The following Load Data 1 fields:
e IdMemoryTop
* |dLoadTop
* |dQueryPatchValue
* The entire next stage's payload image at a paragraph boundary

This happens to be enough to run a kernel-only inicomp stage, as well as the drkernpl stage that
sets up the DRBIO and DRDOS modules and runs the former.

13



Source Control Revision ID

hg 85a55eda605d, from commit on at 2024-01-02 22:09:11 +0100

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/ldosboot/rev/85a55eda605d

14


https://hg.pushbx.org/ecm/ldosboot/rev/85a55eda605d

	lDOS boot documentation
	Contents
	Section 1: lDOS boot protocols
	1.1 Sector to iniload protocol
	1.1.1 File properties
	1.1.2 Signatures
	1.1.3 Load Stack Variables (LSV)
	1.1.4 Memory map
	1.1.5 Load filename in the boot sector
	1.1.6 Query patch support

	1.2 Iniload to payload protocol
	1.2.1 Stack
	1.2.2 Extended BIO Parameter Block (EBPB)
	1.2.3 Load Stack Variables (LSV)
	1.2.4 Load Data 1 (LD)
	1.2.5 Load Command Line (LCL)

	1.3 Application mode protocol
	1.4 Device mode protocol

	Section 2: DRLoad boot protocols
	2.1 Sector to drload protocol
	2.1.1 Overview

	2.2 DRLoad to payload protocol

	Source Control Revision ID


