
MSDebug manual

2023 to 2025 by E. C. Masloch. Usage of the works is permitted provided that this instrument
is retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2025-09-11.

1

Contents

Section 1: Overview and highlights . 5

1.1 Quick start for reading this manual 5

1.2 Changes from original 2018 source release Debug 5

Section 2: Invoking the debugger . 8

Section 3: Interface Reference . 9

3.1 Interface Output . 9

3.2 Interface Input . 9

3.3 Register dumping . 9

3.4 Memory dumping . 9

3.5 Disassembly . 10

3.6 Loading the debuggee . 10

3.7 Running the debuggee . 10

3.8 Help . 11

Section 4: Debugging the debugger itself 12

Section 5: Parameter Reference . 13

5.1 Number . 13

5.2 Address . 13

5.3 Range . 13

5.4 List . 13

5.5 Breakpoint . 14

5.6 Port . 14

5.7 Drive . 14

5.8 Sector . 14

5.9 Register . 14

Section 6: Command Reference . 15

2

6.1 ? command . 15

6.2 A command - Assemble . 15

6.3 BU command - Break Upwards 15

6.4 C command - Compare memory 15

6.5 D command - Dump memory 15

6.6 E command - Enter memory . 16

6.7 F command - Fill memory . 16

6.8 G command - Go . 17

6.9 H command - Hexadecimal add/subtract values 17

6.10 I command - Input from port 17

6.11 L command - Load Program 17

6.12 L command - Load Sectors . 17

6.13 M command - Move memory 17

6.14 N command and K command - Set program Name 17

6.15 O command - Output to port 18

6.16 P command - Proceed . 18

6.17 Q command - Quit . 18

6.18 R command - Display and set Register values 18

6.19 S command - Search memory 19

6.20 T command - Trace . 19

6.21 U command - Disassemble . 19

6.22 W command - Write Program 19

6.23 W command - Write Sectors 20

6.24 Comma command . 20

Section 7: Variable Reference . 21

Section 8: Interrupt Reference . 22

Section 9: Command help . 23

Section 10: Online help . 24

Section 11: Usage conditions and attributions 25

Section 12: lDebug advertisement . 26

3

Source Control Revision ID . 28

4

Section 1: Overview and highlights

MSDebug is a 86-DOS debugger based on the original Debug from Microsoft. It is based on
the Debug sources of the 2018 free software release of MS-DOS version 2. A few features from
newer Debug versions were recreated. Further, a few fixes and extensions have been added.
However, two features are still missing:

• EMS related X commands

• L/W command disk sector accesses for FAT32 file systems

MSDebug is intended to stay largely compatible to Debug. For a more powerful advanced
debugger, consider lDebug, based on the FreeDOS Debug/X project. (Refer to section 12 for a
list of lDebug features.)

1.1 Quick start for reading this manual
• The interface reference (section 3) explains the basics of the debugger's interface and lists

some common commands.

• The parameter reference (section 5) lists the types of parameters used by the available
commands.

• The command reference (section 6) describes most commands in detail.

• The interrupt reference (section 8) lists what interrupt hooks the debugger sets up.

• Usage conditions (section 11) list the license and copyright attributions.

• The lDebug advertisement (section 12) states why you should use lDebug instead.

• Source Control Revision ID gives the Mercurial hash of the manual's source revision, and
links to that revision in ecm's repository.

1.2 Changes from original 2018 source release Debug
• P command support for repetition count added (recreated from later MS-DOS versions)

• ORG directive added to assembler (recreated from later MS-DOS versions, though with
better error handling)

• Interrupt 1 and interrupt 3 vectors are restored (upon return into the debugger, enabling to
debug most of the debugger itself like lDDebug)

• Tracing into a software interrupt can be done using T command, use the P command to
proceed past interrupt instead (recreated from later MS-DOS versions)

5

https://pushbx.org/ecm/web/#projects-ldebug

• K command that acts like lDebug's K command (or lDebug's default handling of the N
command)

• BU command like lDDebug's BU command

• Child process is allocated memory using int 21h function 48h, and initialised with function
55h

• After the attached process has terminated a child process is created again

• If a child process cannot be created due to lack of memory (512 bytes required) then the
comma command ‘, ’ can be used to retry creation

• Child process is created with the same correct CALL 5 address as used by more modern
MS-DOS and FreeDOS kernels

• Data is aligned to even boundaries

• Online help screen and command help added

• Created child process is initialised with aretn instruction

• Child process stack is initialised properly with a zero word

• Bugfix: A program is loaded initially even when the command line tail after the program
load filename is empty

• .HEX file read fixed to end on encountering a NUL byte (0), EOF byte (1Ah), or the EOF
(a short read)

• Do not leak file handles after program-loading or program-saving commands

• .HEX file read aborts if it wraps around the offset

• Bugfix: Move command M will correctly move forwards or backwards based on the linear
address, fixing overlapping moves in which the segments differ in the opposite way to the
linear addresses

• 32-bit sector numbers allowed in sector L/W commands and MS-DOS v3.31+ extended
int 25h/26h interface used if DOS version is reported as above-or-equal 3.31

• Sector L/W commands allow drive numbers consisting of 2 digits

• Fix: Assemble JMP/CALLimm:imm as far unconditionally, even if the segment matches
the current assembly segment

• Support main command line semicolon command as a comment

• Assembler errors out on some cases of invalid trailing instruction parameters (egMUL)

• Source texts ported to build using only NASM (2-clause BSD license, C running on host)
and WarpLink and x2b2 (both Public Domain, 8086 assembly running on a DOS) plus the
optional convlist.pl (Fair License, perl running on host)

• P command will skip indirect call instructions likecall dx (like later MS-DOS Debug)
andcall [300] andcall [bx] (both new)

6

• P command parses segment prefixes to detect instructions to skip (recreated from later MS-
DOS Debug)

• K and N commands setal andah only to 00h or FFh, no other values, where previously
FCBs with wildcards could set these registers to 01h

• Query and use DOS switch character instead of hardcoding slash ‘/ ’ (pick from MS-DOS
v4.00 Debug)

• Size of process memory block is checked early on, which is needed to ensure proper
operation if loading into small holes such as in a UMB

7

Section 2: Invoking the debugger

One switch is supported:

/?

Show the command help page about invoking the debugger. Refer to section 9 for a copy
of that help.

8

Section 3: Interface Reference

3.1 Interface Output
The debugger provides a line-based text interface. The interface is written to DOS standard
output.

3.2 Interface Input
The default command prompt indicates that a command may be entered. It is a dash ‘- ’. Input
is read from DOS standard input.

If the input is redirected from a file (a Debug script) it is crucial to include a Q command in the
file. The lDebug sources claim that MSDebug may hang if it reaches the End Of File on standard
input.

3.3 Register dumping
The R command (refer to section 6.18) without any parameters dumps the current register values.
Then it disassembles a single instruction. The register dump looks like this:

-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
DS=42A4 ES=42A4 SS=42A4 CS=42A4 IP=0100 NV UP DI PL NZ NA PO NC
42A4:0100 C3 RET
-

After running the program being debugged, usually the R command is also being run. This
includes a step with the T or P commands. (Section 6.20, section 6.16.) It also includes a run
with the G command. (Section 6.8.)

3.4 Memory dumping
Another basic command is the D command (section 6.5). It is used to dump memory contents.
For example, to dump part of a program:

-d
42A4:0140 8C C8 31 DB 05 59 19 50-53 CB 26 80 7F 02 00 74 .H1[.Y.PSK&....t
42A4:0150 14 26 C7 47 03 00 01 26-80 7F 02 0E 74 06 26 C7 .&GG...&....t.&G
42A4:0160 47 03 03 81 CB 50 1E 9C-53 BB 25 05 EB B5 5B 06 G...KP..S;%.k5[.
42A4:0170 E9 59 73 59 9D 13 20 63-B9 64 F6 2F 3C 65 67 67 iYsY.. c9dv/<egg
42A4:0180 E5 7B 08 6D 55 69 BD 6B-E9 6C D6 66 0A 3E 1C 6F e{.mUi=kilVf.>.o
42A4:0190 A3 1F 31 76 37 39 D1 45-76 7C 5E 78 CE 79 4D A3 #.1v79QEv|^xNyM#
42A4:01A0 00 00 00 00 10 41 00 00-0F 00 00 60 02 00 00 00 A.....`....
42A4:01B0 00 00 00 00 00 00 01 00-00 00 00 00 10 41 00 00 A..
-

9

3.5 Disassembly

The U command is used to disassemble one or several instructions. Example:

-u
5BFD:0000 8CD0 MOV AX,SS
5BFD:0002 8CDA MOV DX,DS
5BFD:0004 29D0 SUB AX,DX
5BFD:0006 31D2 XOR DX,DX
5BFD:0008 B90400 MOV CX,0004
5BFD:000B D1E0 SHL AX,1
5BFD:000D D1D2 RCL DX,1
5BFD:000F E2FA LOOP 000B
5BFD:0011 50 PUSH AX
5BFD:0012 01E0 ADD AX,SP
5BFD:0014 83D200 ADC DX,+00
5BFD:0017 83C00F ADD AX,+0F
5BFD:001A 83D200 ADC DX,+00
5BFD:001D 24F0 AND AL,F0
5BFD:001F 83FA02 CMP DX,+02
-

3.6 Loading the debuggee

A program to examine can be loaded using the N or K, then L commands. If the debugger is
loaded with a filename specified in its command line, it will run the K and L commands on its
own.

The K command sets up some buffers internal to the debugger. These areonlyused when a new
process comes to be, either because the attached process has terminated or because a program-
loading L command is used.

One of those buffers specifies the pathname of the executable file to load. The pathname must
include the filename extension, if any. The pathname must be relative to the current directories
at the time the L command runs, or it must be absolute. The tail of the K command after the
pathname is used as the command line tail for a new debuggee process.

The N command behaves a little differently in MSDebug. The initial pathname is used as the
program load filename in the same way as for the K command. However, the N command will use
all its parameters as the command line tail, not just the remainder after the pathname. Further, it
allcapses the command line tail. Finally, the N command will always write both the debugger's
internal buffers as well as the PSP assumed to be addressable using the current debuggee DS
register.

The L command without any parameters attempts to load the program specified to the last N or
K command into a new process. If the L command does not display any messages this indicates
success.

3.7 Running the debuggee

Once a program is loaded into the debugger it can be run in several ways:

10

G command

Runs at full speed until a breakpoint is encountered. Temporary breakpoints can be
specified to the G command. Refer to section 6.8.

T command

Traces a single instruction. Refer to section 6.20.

P command

Either runs at full speed with a breakpoint behind the current instruction, or traces a single
instruction. Software interrupts, call instructions, repeated string instructions, and loop
instructions are proceeded past by using a breakpoint. Refer to section 6.16.

3.8 Help
The online help can be accessed using the ‘?’ command. Refer to section 10 for a copy of the
online help.

11

Section 4: Debugging the debugger itself

The debugger installs its interrupt handlers only within the ‘dexit ’ function, so as to return
the control flow to this instance when it runs its debuggee code. On return into this instance,
it uninstalls its handlers again. This mechanism allows to debug most of the debugger using a
different debugger.

An additional command is supported, the BU command (which stands for "Break Upwards").
It will run a breakpoint within the debugger's code segment which will break into the other
debugger. Its code was updated so it will break at the command dispatcher. This means if
the outer debugger is an lDebug then it can be instructed to skip to the next command being
dispatched by entering the command ‘G ip ’.

Other than for the most trivial sessions it is recommended to control the outer debugger by serial
I/O, separately from the I/O of the debuggable debugger.

12

Section 5: Parameter Reference

5.1 Number
Plain numbers are read in hexadecimal, up to 4 hexits. Plain number parameters are used by a lot
of commands. Sometimes, the plain number parameter type is called ‘byte’ or ‘value’. Numbers
representing sector numbers may be up to 8 hexits.

5.2 Address
An address parameter is calculated with a default segment. First, a plain number may be parsed.
If it is followed by a colon, the first number is taken as segment, and then another number is
parsed for the offset.

Instead of a segment number, the name of one of the 4 segment registers may be specified. In
this case the colon is mandatory, and a number for the offset must follow it.

Otherwise, the first number is used as the offset. Offsets are 16 bits.

Address parameters are used by a lot of commands.

5.3 Range
A range parameter may have a default length, or it may be disallowed to omit a length. Parsing
a range starts with parsing an address. Then, if the end of the line is not yet reached, an end for
the range may be specified. The end may be a plain number, which is taken as the offset of the
last byte to include in the range. The address of the last byte to include must be equal or above
the address of the first byte that is included in the range. Specifying a start offset of 0 with an
end offset of 0FFFFh is invalid because the maximum length is 0FFFFh.

The end may instead be specified with an ‘L’ keyword. In that case, the keyword is followed
by a plain number. The maximum length is 0FFFFh. A length of zero is handled in a special
way. For most commands parsing ranges, a length of zero indicates to operate on a full 64 KiB
segment. Unlike other lengths, the zero length may cause a wrap around from offset 0FFFFh
to 0000h. An exception is the U command, which treats a zero length in the same way as a 1
length.

If the default length is used (the line ends after the start address) then a start address near the
end of a segment (1_0000h) will shorten the length if it would otherwise overflow the segment.

Range parameters are used by a lot of commands.

5.4 List
A list is made up of a sequence of items. Each item is either a plain number or a quoted string.
List parsing continues until the end of the line. Each plain number represents a single byte.

13

Quoted strings represent as many bytes as there are quoted. A quoted string can be delimited by
single quotes' or double quotes" . If the used delimiter quote mark occurs twice back to back
while reading the quoted string, this is taken as an escape to include the delimiter mark itself
as a byte of the string. List parameters are used by the E, F, and S commands. Refer to section
6.6, section 6.7, and section 6.19.

5.5 Breakpoint
Each breakpoint is a single address, which defaults to the code segment. The breakpoint
parameter type is used by the G command, refer to section 6.8.

5.6 Port
A port is a plain number for parsing purposes. The port parameter type is used by the I and O
commands, refer to section 6.10 and section 6.15.

5.7 Drive
A drive is a plain number. The number zero corresponds to drive A:. The drive parameter type
is used by the L and W sector commands, refer to section 6.12 and section 6.23.

5.8 Sector
A sector is a plain number, which can be equal to any 32-bit value. The sector parameter type
is used by the L and W sector commands, refer to section 6.12 and section 6.23.

5.9 Register
A register specifies an internal variable of the debugger. These are the debuggee's registers as
stored by the debugger in its data segment. One form of the R command uses a register parameter.
This allows reading and writing the register values. Refer to section 6.18.

14

Section 6: Command Reference

6.1 ? command
Online help ?

The question mark command (?) lists the online help screen. The full help page is listed in section
10.

6.2 A command - Assemble
assemble A [address]

Starts assembly at the indicated address (which defaults to CS segment), or if no address is
specified, at the "asmadd".

Assembly mode has its own prompt. Entering an empty line terminates assembly mode.
Comments can be given with a prefixed semicolon.

6.3 BU command - Break Upwards
This command causes the debugger to execute an int3 instruction in its own code segment. This
breaks to the next debugger that was installed prior to MSDebug.

6.4 C command - Compare memory
compare C range address

Given a range, the address of which defaults to DS, and another address that also defaults to
DS, this command compares strings of bytes, and lists the bytes that differ.

6.5 D command - Dump memory
dump D [range]

Given a range, the address of which defaults to DS, this command dumps memory in
hexadecimal and as ASCII characters. The default length if none is specified defaults to 128
bytes.

In the text dump, control characters are replaced by dots, while bytes with their high bit set are
treated as if the high bit was clear.

If no range is specified, the D command continues dumping at "defdump", which is updated by
each D command to point after the last shown byte.

15

6.6 E command - Enter memory
enter E address [list]

The E command is used to enter values into memory. If the list is specified, its contents are
written to the address specified. Otherwise, the interactive enter mode starts at the address
specified.

In the interactive enter mode, the segmented address is displayed, and then the current byte
value (2 hexadecimal digits) found at that address yet. Following the value a dot is displayed.
For example:

-e 100
08BD:0100 C3.

At this point the debugger accepts several different inputs:

• One or two hexadecimal digits: To enter a new value to be written at this address

• A blank: To write the new value (if any) and proceed to the next byte

• A minus: To write the new value (if any) and proceed to the prior byte

• Carriage Return: To write the new value (if any) and quit interactive enter mode

• Backspace: To delete the most recently entered digit of a candidate new value

• All other inputs are ignored

After entering a blank, the debugger will either display the next byte's current value in the same
line or start a new line with the current segmented address and then the current byte value. A
new line is started if the current offset is divisible by 8. For example, after entering 8 blanks:

-e 100
08BD:0100 C3. CC. CC. CC. CC. CC. CC. CC.
08BD:0108 CC.

After entering a minus, the minus is displayed on the current line and then (always) a new line
is started to display the new segmented address (with its offset decremented). For example,
entering a new value (‘A0’), then a blank, then a minus, and then another new value (‘A1’), then
a CR:

-e 100
08BD:0100 C3.A0 CC.-
08BD:0100 A0.A1
-

6.7 F command - Fill memory
fill F range list

The F command fills memory with a byte pattern. The first parameter is the range to fill. The
next parameter is a list, which provides the pattern with which to fill. The pattern is repeated so
as to fill the destination.

16

6.8 G command - Go
go G [=address] [addresses]

The G command runs the debuggee. It can be given a start address (the segment of which defaults
to CS), prefixed by an equals sign, in which case CS:IP is set to that start address upon running.

The G command allows specifying breakpoints, which are segmented addresses. By default, 10
G breakpoints are supported. If too many breakpoints are entered, a "BP Error" is displayed.
Note that no two breakpoints should point to the same (linear) address, or this breakpoint won't
be restored in the expected way.

6.9 H command - Hexadecimal add/subtract values
hex H value1 value2

The H command performs calculation and displays the results. The first result is that which
is calculated by adding the two numbers. The second result is calculated by subtracting the
second number from the first number. The results are written as unsigned 16-bit numbers in
hexadecimal, 4 hexits per number.

6.10 I command - Input from port
input I port

The I command inputs from an x86 port. The port can be any number between 0 and FFFFh. I
inputs a byte from the specified port.

6.11 L command - Load Program
load L [address]

6.12 L command - Load Sectors
load L address drive firstsector number

6.13 M command - Move memory
move M range address

6.14 N command and K command - Set program Name
name N [pathname] [arglist]
set command K [pathname [arglist]]

These commands set up the filename and parameters to use when setting up a new process using
the L (Load program) command. If the filename ends in.COMor .EXE it will be loaded as a
DOS program using the interrupt 21h service 4B01h. If the filename ends in.HEX the debugger
will parse it as an Intel hex file. Otherwise the file is loaded as a flat binary by the debugger
itself. In any case, the PSP of the process created by the L command will receive the command
line tail, which for K starts after the filename.

Unlike the N command, for the K command the executable filename is not included in the
command line tail, and an existing process won't be modified by the K command. It only sets

17

the filename and tail for L to use.

The N command writes to memory between DS:005Ch and DS:0100h. It stores the command
line tail in allcaps.

The K command was added to MSDebug to provide the same experience as lDebug's K
command, which matches lDebug's default N command. The K command behaves in a similar
way to how MSDebug handles a program load pathname and command line tail specified on
the MSDebug command line initially.

6.15 O command - Output to port
output O port byte

The O command outputs to an x86 port. The port can be any number between 0 and FFFFh. O
outputs a byte to the specified port. The value to write is specified by the second number.

6.16 P command - Proceed
proceed P [=address] [number]

The P command causes debuggee to run a proceed step. This is the same as tracing (T command)
for most instructions, but behaves differently for ‘int ’, ‘ call ’, ‘ loop ’, and repeated string
instructions. For these, a proceed breakpoint is written behind the instruction (similarly to how
the G command writes breakpoints), and the debuggee is run without the Trace Flag set.

Like for the G command, a start address can be given to P prefixed by an equals sign. Next,
a count may be specified, which causes the command to execute as many P steps as the count
indicates.

6.17 Q command - Quit
quit Q

6.18 R command - Display and set Register values
register R [register]

The R command without any register specified dumps the current registers, and disassembles
the instruction at the current CS:IP location.

R with a register displays the current value of the specified variable. It then displays a prompt,
allowing the user to enter a new value for that variable. Entering an empty line returns to the
default debugger command line. The supported register variables are listed in section 7.

For example, entering ‘r ax ’, Enter, ‘26 ’, Enter, ‘r ax ’ again, Enter twice, results in:

-r ax
AX 0000
:26
-r ax
AX 0026
:
-

18

R with the special register nameF accesses the flags register using the symbolic flag states. Like
for regular registers, this will display all the current states then prompt for new ones. Multiple
different flags' states can be entered on the same line.

The following table lists the flag states that are recognised, in the third and fourth column:

Value Name Set Clear
0800 OF Overflow Flag OV Overflow NV No overflow
0400 DF Direction Flag DN Down UP Up
0200 IF Interrupt Flag EI Enable interrupts DI Disable interrupts
0080 SF Sign Flag NG Negative PL Plus
0040 ZF Zero Flag ZR Zero NZ Not zero
0010 AF Auxiliary Flag AC Auxiliary carry NA No auxiliary carry
0004 PF Parity Flag PE Parity even PO Parity odd
0001 CF Carry Flag CY Carry NC No carry

It is not valid to set two or more states for the same flag, no matter whether they are the same
or opposing states. If this occurs, a "DF Error" (Double Flag Error) is produced. An unknown
flag state name results in a "BF Error" (Bad Flag Error). The input line is parsed one by one, so
an error that is detected during a subsequent parameter will leave the debugger already having
applied the earlier parameters.

A one-letter or two-letter unknown register name for the R command results in the "BR Error"
(Bad Register Error).

6.19 S command - Search memory
search S range list

The S command searches memory for a byte string. The range specifies the search space. The
search string is specified as a list of byte values. The display of search results consists of the
result's segmented address.

6.20 T command - Trace
trace T [=address] [number]

The T command is similar to the P command. However, T traces all instructions.

6.21 U command - Disassemble
unassemble U [range]

Given a range, the address of which defaults to CS, this command disassembles instructions
from memory. The default length if none is specified defaults to 32 bytes. All instructions that
are contained within or start within the specified range are disassembled.

If no range is specified, the U command continues disassembling at "disadd", which is updated
by each U command to point after the last disassembled byte. The default length is the same as
for if a range without a length is specified.

6.22 W command - Write Program
write W [address]

19

6.23 W command - Write Sectors
write W address drive firstsector number

6.24 Comma command
If the debuggee terminated but did not release enough memory to create an empty process (a
memory block of 512 bytes), then the debugger will emit an error message. Entering a command
consisting only of a comma, followed directly by a Carriage Return, will attempt to create a
process again. This command always displays a message stating what it did.

20

Section 7: Variable Reference

Most 16-bit 8086 debuggee registers can be accessed using the R command. These are:

• ax , cx , dx , bx , sp , bp , si , di

• es , cs , ss , ds

• ip and its aliaspc (still displayed asip)

21

Section 8: Interrupt Reference

• Interrupt 1 - Trace

• Interrupt 3 - Breakpoint

These interrupts are hooked by the debugger.

These interrupts are hooked within thedexit function and unhooked before thedexit
function returns.

Unhooking is always done by simply updating the IVT entries with whatever handlers are stored
as the prior vectors.

22

Section 9: Command help

MSDebug release 2 by ecm

Runs Debug, a program testing and editing tool.

DEBUG [[drive:][path]filename [testfile-parameters]]

 [drive:][path]filename Specifies the file you want to test.
 testfile-parameters Specifies command-line information required by
 the file you want to test.

After Debug starts, type ? to display a list of debugging commands.

23

Section 10: Online help

MSDebug release 2 by ecm help screen
assemble A [address]
compare C range address
dump D [range]
enter E address [list]
fill F range list
go G [=address] [addresses]
hex H value1 value2
input I port
load L [address [drive firstsector number]]
move M range address
name N [pathname] [arglist]
set command K [pathname [arglist]]
output O port byte
proceed P [=address] [number]
quit Q
register R [register]
search S range list
trace T [=address] [number]
unassemble U [range]
write W [address [drive firstsector number]]

24

Section 11: Usage conditions and attributions

Copyright (C) 1983 Microsoft Corp.
Copyright (C) IBM and Microsoft Corporation.
Modifications copyright 2018 John Elliott
 and copyright 2022 S. V. Nickolas.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the Software), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

MS-DOS is a Registered Trademark of Microsoft Corp.

25

Section 12: lDebug advertisement

This section lists some benefits of lDebug, the FreeDOS Debug/X fork.

• Expression evaluator can be used whereever a number is to be parsed

• D, U, T, TP, P, G commands can be repeated with autorepeat

• Permanent breakpoints (B commands)

• G command can re-use prior breakpoints list with G AGAIN command (or autorepeat)

• Several variables beyond the 16-bit registers to control the debugger or store calculation
results

• Paging to allow reading longer outputs

• 686 level assembler and disassembler

• DPMI build lDebugX for debugging DPMI clients, supporting 32-bit offsets in segments

• InDOS mode to switch to ROM-BIOS video and keyboard I/O rather than DOS's standard
output and input

• Line editor and line history (if not using the DOS line input function)

• Can be boot loaded for debugging Real/Virtual 86 Mode kernels

• Can be installed as a device driver in CONFIG.SYS

• Script for lDebug (SLD) file reading using the Y command

• Serial I/O mode

• Conditional tracing for the T, TP, and P commands using a condition after a WHILE
keyword

• Buffered tracing for T, TP, and P using a SILENT keyword

• T defaults to proceeding past software interrupt calls, can be modified using Trace Mode
(TM command)

• TP command which proceeds past repeated string instructions

• DM command to list MCBs

• DI command to dump interrupt handler chains

• DW and DD commands to dump data in words or dwords

26

https://pushbx.org/ecm/web/#projects-ldebug

• 32-bit numeric handling

• F and S commands can use a memory source instead of a list, using a RANGE keyword

• H command can display an expression result in hexadeximal, decimal, or one arbitrary base
of choice

• I and O commands have IW/OW and ID/OD variants for word and doubleword port I/O

• R command can be switched to display 32-bit and 386 registers

• Machine type can be set to make the assembler and disassembler display when the machine
does not support an instruction

• QA command can be used to try to terminate an attached process

• S command can search backwards using the REVERSE keyword

• Provides a number of online help pages

• RN command to dump 8087 registers

• RM command to dump MMX registers, and variables to read and write them

• RE command buffer to run commands from T, TP, P, or G dump calls

• RC command buffer to run commands at startup or group several commands later on

• Numeric inputs can be specified with a hash sign ‘#’ modifier to enter in arbitrary numeric
bases

• Access variables and VALUE IN constructs to detect memory accesses before they are
actually carried out (requiring to trace instructions)

• TSR and ATTACH commands to detach from or attach to a process

• IF command to conditionally run another command

• Timer and AMIS interrupt hooks (optional)

• Ability to load Extensions for lDebug (ELDs)

lDebug can be built using the free software Netwide Assembler (NASM), but as of MSDebug
release 2 the same is true of MSDebug.

However, there are some disadvantages to lDebug as well:

• Memory use and executable size can easily reach as much as ten times that of MSDebug

• Less compatibility to original MS-DOS Debug

• Performance may be worse

• May require some MS-DOS version 3 or version 5 features

27

Source Control Revision ID

hg 6513d801306a, from commit on at 2025-09-11 21:13:40 +0200

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/msdebug/rev/6513d801306a

28

https://hg.pushbx.org/ecm/msdebug/rev/6513d801306a

	MSDebug manual
	Contents
	Section 1: Overview and highlights
	1.1 Quick start for reading this manual
	1.2 Changes from original 2018 source release Debug

	Section 2: Invoking the debugger
	Section 3: Interface Reference
	3.1 Interface Output
	3.2 Interface Input
	3.3 Register dumping
	3.4 Memory dumping
	3.5 Disassembly
	3.6 Loading the debuggee
	3.7 Running the debuggee
	3.8 Help

	Section 4: Debugging the debugger itself
	Section 5: Parameter Reference
	5.1 Number
	5.2 Address
	5.3 Range
	5.4 List
	5.5 Breakpoint
	5.6 Port
	5.7 Drive
	5.8 Sector
	5.9 Register

	Section 6: Command Reference
	6.1 ? command
	6.2 A command - Assemble
	6.3 BU command - Break Upwards
	6.4 C command - Compare memory
	6.5 D command - Dump memory
	6.6 E command - Enter memory
	6.7 F command - Fill memory
	6.8 G command - Go
	6.9 H command - Hexadecimal add/subtract values
	6.10 I command - Input from port
	6.11 L command - Load Program
	6.12 L command - Load Sectors
	6.13 M command - Move memory
	6.14 N command and K command - Set program Name
	6.15 O command - Output to port
	6.16 P command - Proceed
	6.17 Q command - Quit
	6.18 R command - Display and set Register values
	6.19 S command - Search memory
	6.20 T command - Trace
	6.21 U command - Disassemble
	6.22 W command - Write Program
	6.23 W command - Write Sectors
	6.24 Comma command

	Section 7: Variable Reference
	Section 8: Interrupt Reference
	Section 9: Command help
	Section 10: Online help
	Section 11: Usage conditions and attributions
	Section 12: lDebug advertisement
	Source Control Revision ID

