
lDOS boot documentation

2020 by C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2022-03-08.

1

Contents

Section 1: lDOS boot protocols . 3

1.1 Sector to iniload protocol . 3

1.1.1 Signatures . 3

1.1.2 Load Stack Variables (LSV) 3

1.2 Iniload to payload protocol . 5

1.2.1 Extended BIO Parameter Block (EBPB) 5

1.2.2 Load Stack Variables (LSV) 5

1.2.3 Load Data 1 (LD) . 5

1.2.4 Load Command Line (LCL) 7

Source Control Revision ID . 8

2

Section 1: lDOS boot protocols

1.1 Sector to iniload protocol
The iniload kernel is loaded to an arbitrary segment. The segment must be at least 60h. Common
choices are 60h, 70h, and 200h. At least 1536 bytes of the file must be loaded. Current loaders
will load at least 8192 bytes if the file is as large or larger than that. The entrypoint is found by
applying no segment adjustment (0) and choosing the offset 400h (1024).

1.1.1 Signatures

At offset 1020 (3FCh) there is the signature ‘lD ’. Behind that there are two bytes with printable
non-blank ASCII codepoints. Currently the following signatures are defined:

‘ lDOS’

lDOS kernel (not yet in use)

‘ lDRx ’

RxDOS kernel

‘ lDFD ’

FreeDOS kernel wrapped in iniload (fdkernpl.asm)

‘ lDeb ’

lDebug

‘ lDDb ’

lDDebug (debuggable lDebug)

‘ lDTP ’

lDOS test payload kernel (testpl.asm)

‘ lDTW’

lDOS test result writer kernel (testwrit.asm)

1.1.2 Load Stack Variables (LSV)

Under this protocol, the pointer ‘ss:bp ’ is passed. It points to a boot sector with (E)BPB. The
stack pointer must be at most ‘bp - 10h ’. Below the pointed to location there live the Load

3

Stack Variables. These follow this structure:

 struc LOADSTACKVARS, -10h
lsvFirstCluster: resd 1
lsvFATSector: resd 1
lsvFATSeg: resw 1
lsvLoadSeg: resw 1
lsvDataStart: resd 1
 endstruc

lsvFirstCluster

(FAT12, FAT16) Low word gives starting cluster of file. High word uninitialised.

(FAT32) Dword gives starting cluster of file.

(else) Should be zero.

lsvFATSector

(FAT16) Low word gives loaded sector-in-FAT. -1 if none loaded yet. High word
uninitialised.

(FAT32) Dword gives loaded sector-in-FAT. -1 if none loaded yet.

(FAT12, else) Unused.

lsvFATSeg

(FAT16, FAT32) Word gives segment of FAT buffer if word/dword [lsvFATSector] != -1.

(FAT12) Word gives segment of FAT buffer. Zero if none. Otherwise, buffer holds entire
FAT data, up to 6 KiB.

lsvLoadSeg

Word points to segment beyond last loaded paragraph. Allows iniload to determine how
much of it is already loaded.

lsvDataStart

Dword gives sector-in-partition of first cluster's data.

An LSV extension allows to pass a command line to the kernel. The stack pointer must be at
most ‘bp - 114h ’ then. This follows the structure like this:

lsvclSignature equ "CL"
lsvclBufferLength equ 256

 struc LSVCMDLINE, LOADSTACKVARS - lsvclBufferLength - 4
lsvCommandLine:
.start: resb lsvclBufferLength
.signature: resw 1
lsvExtra: resw 1
 endstruc

4

lsvCommandLine.start

Command line buffer. Contains zero-terminated command line string.

lsvCommandLine.signature

Contains the signature value ‘CL’ if command line is given.

lsvExtra

Used internally by iniload. Space for this must be reserved when passing a command line.

If no command line is passed then either the stack pointer must be ‘bp - 10h ’, or ‘bp -
12h ’, or the word in the lsvCommandLine.signature variable (word [ss:bp - 14h])

must not equal the string ‘CL’.

• dosemu2's RxDOS.3 support sets ‘sp = bp - 10h ’

• ldosboot boot.asm (FAT12/FAT16) loader uses the variable for a ‘paragraphs per sector’
value which is always a power of two and always below-or-equal 200h.

• ldosboot boot32.asm (FAT32) loader uses the variable for an ‘entries per sector’ value
which is always a power of two and always below-or-equal 100h.

• lDebug with protocol optionscmdline=0 push_dpt=0 sets ‘sp = bp - 10h ’

1.2 Iniload to payload protocol
The payload is loaded to an arbitrary segment. The segment must be at least 60h. The entire
payload must be loaded. The size of the payload is determined at iniload build time. The
entrypoint is found by applying a segment adjustment and choosing an offset. The segment
adjustment is specified at iniload build time by the numeric define_EXEC_SEGMENT(default
0), and the offset by the define_EXEC_OFFSET(default 0).

1.2.1 Extended BIO Parameter Block (EBPB)

Above the LSV,ss:bp points to an EBPB and surrrounding boot sector. Note that this is always
a FAT32-style EBPB. If the filesystem that is loaded from is not FAT32, and is therefore FAT16
or FAT12, then the FAT16/FAT12 BPBN structure is moved up. It is placed where the FAT32
BPBN is usually expected. In this case, the entire boot sector contents behind the BPBN are also
moved up by the size of the FAT32-specific fields. The FAT32-specific fields are filled with zeros,
except for the FAT32 ‘sectors per FAT’ field. It is filled with the contents of the FAT16/FAT12
‘sectors per FAT’ field.

1.2.2 Load Stack Variables (LSV)

Refer to section 1.1.2.

1.2.3 Load Data 1 (LD)

Below the LSV, iniload passes the LOADDATA (1) structure.

 struc LOADDATA, LOADSTACKVARS - 10h
ldMemoryTop: resw 1
ldLoadTop: resw 1

5

ldSectorSeg: resw 1
ldFATType: resb 1
ldHasLBA: resb 1
ldClusterSize: resw 1
ldParaPerSector:resw 1
ldLoadingSeg: resw 1
ldLoadUntilSeg: resw 1
 endstruc

ldMemoryTop

Word. Segment pointer to behind usable memory. Points at the first of the EBDA, RPL-
reserved memory, or video memory or otherwise UMA. Indicates how much memory may
be used by a typical kernel. (lDebug detects the EBDA to move that below where it installs.)

ldLoadTop

Word. Segment pointer to lowest lDOS boot memory in use. All memory between linear
600h and the segment indicated here is usable by the payload. Only the payload itself is
stored in this area. The other buffers, stack, and structures passed by iniload must live above
this segment.

ldSectorSeg

Word. Segment pointer to an 8 KiB transfer buffer. It is insured that this buffer does not cross
a 64 KiB boundary. This may be needed by some disk units. The buffer is not initialised
to anything generally.

ldFATType

Byte. Indicates length of FAT entry in bits. 12 indicates FAT12, 16 FAT16, 32 FAT32. It is
planned to allow zero for non-FAT filesystems.

ldHasLBA

Byte. Only least significant bit used. Bit on indicates LBA extensions available for the load
disk unit. Bit off indicates LBA extensions not available.

ldClusterSize

Word. Contains amount of sectors per cluster. Unlike the byte field for the same purpose
in the BPB, this field can encode 256 (EDR-DOS compatible) without any masking. May
be given as zero for non-FAT filesystems.

ldParaPerSector

Word. Contains amount of paragraphs per sector. Must be a power of two between 2 (32
B/s) and 200h (8192 B/s). May be given as zero for non-FAT filesystems.

ldLoadingSeg

Word. Internally used by iniload. Available for re-use by payload.

ldLoadUntilSeg

Word. Internally used by iniload. Available for re-use by payload.

6

1.2.4 Load Command Line (LCL)

Below the LOADDATA structure, iniload passes the LOADCMDLINE structure.

lsvclBufferLength equ 256

 struc LOADCMDLINE, LOADDATA - lsvclBufferLength
ldCommandLine:
.start: resb lsvclBufferLength
 endstruc

This buffer is always initialised to an ASCIZ string. At most 255 bytes may be initialised to
string data. At most the 256th byte is a zero.

If the first word of the buffer is equal to 0FF00h, that is there is an empty command line the
terminator of which is followed by a byte with the value 0FFh, then no command line was
passed to iniload. Currently lDebug can pass a command line to iniload when loading with its
lDOS, RxDOS.2, or RxDOS.3 protocols. When iniload is loaded as a Multiboot1 or Multiboot2
specification kernel, it is also assumed that a command line can be passed.

7

Source Control Revision ID

hg 0d54fe4aaa06, from commit on at 2021-11-02 18:11:32 +0100

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/ldosboot/rev/0d54fe4aaa06

8

https://hg.pushbx.org/ecm/ldosboot/rev/0d54fe4aaa06

	lDOS boot documentation
	Contents
	Section 1: lDOS boot protocols
	1.1 Sector to iniload protocol
	1.1.1 Signatures
	1.1.2 Load Stack Variables (LSV)

	1.2 Iniload to payload protocol
	1.2.1 Extended BIO Parameter Block (EBPB)
	1.2.2 Load Stack Variables (LSV)
	1.2.3 Load Data 1 (LD)
	1.2.4 Load Command Line (LCL)

	Source Control Revision ID

