
lDebug manual

2020--2024 by E. C. Masloch. Usage of the works is permitted provided that this instrument
is retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2025-07-26.

1

Contents

Section 1: Overview and highlights . 20

1.1 Quick start for reading this manual 20

1.2 Some tips for using the debugger 21

Section 2: News . 24

2.1 Release 10 (future) . 24

2.2 Release 9 (2024-12-21) . 24

2.3 Release 8 (2024-03-08) . 26

2.4 Release 7 (2024-02-16) . 27

2.5 Release 6 (2023-08-26) . 28

2.6 Release 5 (2023-03-08) . 31

2.7 Release 4 (2022-03-08) . 37

2.8 Release 3 (2021-08-15) . 38

2.9 Release 2 (2021-05-05) . 40

2.10 Release 1 (2021-02-15) and earlier 41

Section 3: Building the debugger . 43

3.1 Components for building . 43

3.2 How to build . 45

3.2.1 How to build the mktables program and the debugger tables 47

3.2.2 How to build the instsect application 49

3.2.3 How to prepare the test suite 49

3.3 Build options . 50

Section 4: Getting started with the release 54

Section 5: Invoking the debugger . 57

5.1 Invoking the debugger in boot loaded mode 57

5.2 Invoking the debugger as an application 57

2

5.3 Invoking the debugger as a device driver 60

5.4 Invoking the test suite . 61

Section 6: Interface Reference . 63

6.1 Interface Output . 63

6.2 Interface Input . 63

6.3 Enabling serial I/O . 63

6.4 Register dumping . 64

6.5 Memory dumping . 65

6.6 Disassembly . 65

6.7 Loading the debuggee . 66

6.8 Running the debuggee . 66

6.9 Help . 67

Section 7: Debugging the debugger itself 68

7.1 Initialising the debuggable debugger 68

7.2 Sectioning overview . 69

7.3 Debugging ELDs . 71

7.3.1 Using the offset hint to debug ELDs 72

7.3.1.1 Using the hint ELDs 72

7.3.2 Using houdinis to debug ELDs 72

7.3.3 ELD examples . 72

Section 8: Parameter Reference . 75

8.1 Number . 75

8.2 Address . 75

8.3 Range . 75

8.4 Range withLINES keyword allowed 76

8.5 List . 76

8.6 List or range . 77

8.7 Keyword . 77

8.8 Index . 77

8.9 Segment . 77

3

8.10 Breakpoint . 77

8.11 Label . 77

8.12 Port . 77

8.13 Drive . 77

8.14 Sector . 78

8.15 Condition . 78

8.16 Register . 78

8.17 Command . 78

8.18 ID . 78

8.19 Filename or pathname . 78

8.20 Command line tail . 78

Section 9: Expression Reference . 80

9.1 Literals . 80

9.2 String literals . 80

9.3 Variables . 80

9.4 Indirection . 80

9.5 Parentheses . 80

9.6 LINEAR keyword . 80

9.7 DESCTYPEkeyword . 81

9.8 VALUE IN construct . 81

9.8.1 VALUE IN construct keywords 81

9.9 Conditional?? :: construct 82

9.10 Expression side effects . 82

Section 10: Command Reference . 83

10.1 Empty command - Autorepeat 83

10.2 ? command . 84

10.3 : prefix - GOTO label . 85

10.4 . (dot) command - Immediate assembler 85

10.5 A command - Assemble . 85

10.6 ATTACH command - Attach to process (Leave TSR mode) 85

4

10.7 B commands - Permanent breakpoints 86

10.7.1 BP command - Set breakpoint 87

10.7.2 BI command - Set breakpoint ID 88

10.7.3 BW command - Set breakpoint condition 88

10.7.4 BO command - Set breakpoint preferred offset 88

10.7.5 BN command - Set breakpoint number 88

10.7.6 BC command - Clear breakpoint 88

10.7.7 BD command - Disable breakpoint 89

10.7.8 BE command - Enable breakpoint 89

10.7.9 BT command - Toggle breakpoint 89

10.7.10 BS command - Swap breakpoint 89

10.7.11 BL command - List breakpoints 89

10.8 BU command - Break Upwards 90

10.9 BOOT commands - Boot loading support 91

10.9.1 BOOT PROTOCOL= command 91

10.9.1.1 Specify protocol 91

10.9.1.2 Altering protocol parameters 91

10.9.1.3 Specifying protocol partition 93

10.9.1.4 Specifying protocol filenames 95

10.9.1.5 Specifying protocol command line 95

10.9.1.6 Boot load protocol compatibilities 95

10.9.1.6.1 FreeDOS 95

10.9.1.6.2 DR-DOS 96

10.9.1.6.3 IBMDOS and MS-DOS 6 96

10.9.1.6.4 MS-DOS 7 96

10.9.1.7 Boot load protocol compatibilities additions 97

10.9.1.7.1 FreeDOS 97

10.9.1.7.2 DR-DOS 97

10.9.1.7.3 IBMDOS and MS-DOS 6 97

10.9.2 BOOT LIST command 97

5

10.9.3 BOOT DIR command 97

10.9.4 BOOT READ and BOOT WRITE commands 97

10.9.5 BOOT QUIT command 98

10.10 C command - Compare memory 98

10.11 COUNT command - Count list length 98

10.12 D command - Dump memory 98

10.13 DI command - Dump Interrupts 99

10.14 DM command - Dump MCBs 100

10.15 DZ/D$/D#/DW# commands - Dump strings 101

10.16 D.A/D.D/D.B/D.L/D.T commands - Descriptor modification 101

10.16.1 D.A command - Allocate descriptor 102

10.16.2 D.D command - Deallocate descriptor 102

10.16.3 D.B command - Set descriptor base 102

10.16.4 D.L command - Set descriptor limit 102

10.16.5 D.T command - Set descriptor type 102

10.17 DT command - Dump text table 102

10.18 E command - Enter memory 103

10.19 EXT command - Load and run an Extension for lDebug 104

10.19.1 Current ELDs . 104

10.20 F command - Fill memory 110

10.21 G command - Go . 110

10.22 GOTO command - Control flow branch 111

10.23 H command - Hexadecimal add/subtract values 112

10.24 I command - Input from port 112

10.25 IF command - Control flow conditional 113

10.26 INSTALL command - Install optional features 113

10.27 L command - Load Program 117

10.28 L command - Load Sectors 117

10.29 M command - Move memory 117

10.30 M command - Set Machine mode 117

6

10.31 N command - Set program Name 118

10.32 O command - Output to port 118

10.33 P command - Proceed . 118

10.34 Q command - Quit . 119

10.35 QA command - Quit attached process 119

10.36 QB command - Quit and break 119

10.37 R command - Display and set Register values 120

10.37.1 RE command - Run register dump Extended 121

10.37.2 RE buffer commands 121

10.37.3 RC command - Run Command line buffer 121

10.37.4 RC buffer commands 121

10.38 RH command - Display Register dump History steps 122

10.39 RM command - Display MMX Registers 123

10.40 RN command - Display FPU Registers 123

10.41 RX command - Toggle 386 Register Extensions display 123

10.42 RV command - Show sundry variables 123

10.43 RVV command - Show nonzero user-defined variables 123

10.44 RVM command - Show debugger segments 124

10.45 RVP command - Show process information 124

10.46 RVD command - Show device information 125

10.47 S command - Search memory 125

10.48 SLEEP command . 126

10.49 T command - Trace . 126

10.49.1 TP command - Trace/Proceed past string ops 126

10.50 TM command - Show or set Trace Mode 126

10.51 TSR command - Enter TSR mode (Detach from process) 126

10.52 U command - Disassemble 127

10.53 UNINSTALL command - Uninstall optional features 127

10.54 V command - Video screen swapping 127

10.55 W command - Write Program 128

7

10.56 W command - Write Sectors 128

10.57 X commands - Expanded Memory (EMS) commands 128

10.58 Y command - Run script file 128

10.58.1 Y command pathnames 128

10.58.1.1 Y command configuration pathes 129

10.58.1.2 Y command default scripts path 129

10.58.2 Y command labels . 129

10.58.3 Y command InDOS interaction 130

10.59 Z commands - Symbolic debugging support 130

10.59.1 Z /S=size - Allocate, resize, or free symbol tables 130

10.59.2 Z STAT - Show symbol table statistics 130

10.59.3 Z ADD - Add a symbol 130

10.59.4 Z DEL - Delete a symbol 131

10.59.5 Z COMMIT - Commit temporary symbols 131

10.59.6 Z ABORT - Discard temporary symbols 131

10.59.7 Z LIST - List symbols 131

10.59.8 Z MATCH - Match symbols 131

10.59.9 Z RELOC - Relocate symbols 131

Section 11: Assembler Reference . 132

11.1 Assembler comparison to MSDebug 132

11.2 Assembler comparison to NASM 132

11.3 Assembler roundtrip . 133

11.4 Disassembly fields . 133

11.5 Assembly fields . 134

11.6 Assembly instruction reference 134

11.6.1 Assembler instruction mnemonics 134

11.6.2 Assembler operand types 134

11.6.3 A quick overview of most 8086 instructions 135

11.6.4 ALU 2-operand instructions 136

11.6.5 ALU 1-operand instructions 136

8

11.6.6 Multiplication and division 136

11.6.7 Shifts and rotates . 137

11.6.8 Data movement . 137

11.6.9 Stack . 137

11.6.10 Branch . 138

11.6.11 Flags . 138

11.6.12 String . 139

11.6.13 Port I/O . 139

11.6.14 Special: Addresses and segments 140

11.6.15 Special: Prefixes . 140

11.6.16 Special: BCD . 140

11.6.17 Special . 141

Section 12: Variable Reference . 142

12.1 Registers . 142

12.2 MMX registers - MMxy . 142

12.3 Options . 143

12.3.1 DCO - Debugger Common Options 143

12.3.2 DCS - Debugger Common Startup options 143

12.3.3 DIF - Debugger Internal Flags 143

12.3.4 DAO - Debugger Assembly Options 143

12.3.5 DAS - Debugger Assembly Startup options 143

12.3.6 DPI - Debugger Parent Interrupt 22h 143

12.3.7 DPR - Debugger PRocess 143

12.3.8 DPP - Debugger Parent Process 143

12.3.9 DPS - Debugger Process Selector 143

12.3.10 DPSPSEL - Debugger PSP Segment/Selector 143

12.4 Default step counts . 144

12.5 Default lengths . 144

12.6 Limits . 144

12.6.1 RELIMIT - RE buffer execution command limit 144

9

12.6.2 RECOUNT - RE buffer execution command count 144

12.6.3 RCLIMIT - RC buffer execution command limit 145

12.6.4 RCCOUNT - RC buffer execution command count 145

12.7 Return Codes . 145

12.7.1 RC - Return Code . 145

12.7.2 ERC - Error Return Code 145

12.8 Addresses . 145

12.8.1 A address (AAS:AAO) 145

12.8.2 D address (ADS:ADO) 145

12.8.3 Address behind R disassembly (ABS:ABO) 145

12.8.4 U address (AUS:AUO) 145

12.8.5 E address (AES:AEO) 145

12.8.6 DZ address (AZS:AZO) 145

12.8.7 D$ address (ACS:ACO) 145

12.8.8 D# address (APS:APO) 145

12.8.9 DW# address (AWS:AWO) 146

12.8.10 DX address (AXO) 146

12.9 I/O configuration . 146

12.9.1 IOR - I/O Rows . 146

12.9.2 IOC - I/O Columns . 146

12.9.3 IOCLINE - I/O Columns for splitting lines ingetinput 146

12.9.4 IOS - I/O Circular Keypress Buffer Start 146

12.9.5 IOE - I/O Circular Keypress Buffer End 147

12.9.6 IOL - I/O Amount of Script Levels to Cancel 147

12.9.7 IOF - I/O Flags . 147

12.10 I/O reading variables . 147

12.11 Serial configuration . 147

12.11.1 DSR - Debugger Serial Rows 147

12.11.2 DSC - Debugger Serial Columns 148

12.11.3 DST - Debugger Serial Timeout 148

10

12.11.4 DSF - Debugger Serial FIFO size 148

12.11.5 DSPVI - Debugger Serial Port Variable Interrupt number 148

12.11.6 DSPVM - Debugger Serial Port Variable IRQ Mask 148

12.11.7 DSPVP - Debugger Serial Port Variable base Port 148

12.11.8 DSPVD - Debugger Serial Port Variable Divisor latch 148

12.11.9 DSPVS - Debugger Serial Port Variable Settings 148

12.11.10 DSPVF - Debugger Serial Port Variable FIFO select 148

12.12 Timer configuration . 149

12.12.1 GREPIDLE - getc repeat idle count 149

12.12.2 SREPIDLE - Sleep repeat idle count 149

12.12.3 SMAXDELTA - Maximum encountered delta ticks 149

12.12.4 SDELTALIMIT - Delta ticks limit 149

12.13 _DEBUG1 variables . 150

12.13.1 TRx - Test Readmem variables 150

12.13.2 TWx - Test Writemem variables 150

12.13.3 TLx - Test getLinear variables 150

12.13.4 TSx - Test getSegmented variables 151

12.14 _DEBUG3 variables . 151

12.14.1 MT0 - Mask Test 0 . 151

12.14.2 MT1 - Mask Test 1 . 151

12.15 Y command variables . 151

12.15.1 YSF - Y Script Flags 151

12.16 V variables - Variables with user-defined purpose 151

12.17 PSP variables . 152

12.17.1 PSP - Process Segment Prefix 152

12.17.2 PPR - Process PaRent 152

12.17.3 PPI - Process Parent Interrupt 22h 152

12.17.4 PSPSEL - PSP segment or selector 152

12.18 SR variables - Search Results 152

12.18.1 SRC - Search Result Count 152

11

12.18.2 SRS - Search Result Segment 152

12.18.3 SRO - Search Result Offset 152

12.19 Access variables . 152

12.19.1 READADR . 152

12.19.2 READLEN . 153

12.19.3 WRITADR . 153

12.19.4 WRITLEN . 153

12.20 Machine type variables . 153

12.21 LFSR variables . 153

12.22 RIxxy - Real 86 Mode Interrupt vectors 154

12.23 FL.xF - Flag status . 154

12.24 HHRESULT - H command result 155

12.25 DARESULT - D.A command result 155

12.26 XARESULT - XA command result 155

12.27 INT8CTRL - Interrupt 8 Control pressed detection time 155

12.28 Device mode variables . 156

12.29 QQCODE - Q command termination return code 156

12.30 TERMCODE - Debuggee termination return code 156

12.31 DDTEXTAND - Data dump text AND mask 156

12.32 AMIS variables . 156

12.32.1 TRYAMISNUM . 156

12.32.2 AMISNUM . 156

12.32.3 TRYDEBUGNUM . 156

12.32.4 DEBUGFUNC . 157

12.33 COUNT - List length count 157

12.34 RHCOUNT - Count of RH buffer entries 157

12.35 ELDAMOUNT - Amount of installed ELDs 157

12.36 CIP - Current CS's EIP or IP 157

12.37 CSP - Current SS's ESP or SP 157

12.38 Boot loading variables . 158

12

12.38.1 BOOTUNITFLxx . 158

Section 13: Interrupt Reference . 159

13.1 Mandatory interrupt hooks . 159

13.2 Serial interrupt . 159

13.3 Interrupt 2Fh - Multiplex (DPMI entrypoint) 160

13.4 Interrupt 8 - Timer . 160

13.5 Interrupt 2Dh - Alternate Multiplex Interrupt 160

13.5.1 AMIS private function 30h - Update IISP Header 161

13.5.2 AMIS private function 31h - Install DPMI entrypoint hook 162

13.5.3 AMIS private function 32h - Reserved for lDebugX 162

13.5.4 AMIS private function 33h - Install fault areas 162

13.5.5 AMIS private function 40h - Display message 163

13.5.6 AMIS private function 41h - Query message status 163

13.5.7 AMIS private function 42h - Get other link data 163

13.5.8 AMIS private function 43h - Inject a debugger command 164

Section 14: Service Reference . 165

14.1 Interrupt 10h . 165

14.2 Interrupt 16h . 165

14.3 Interrupt 2Fh . 165

14.4 Interrupt 12h . 166

14.5 Protected Mode Interrupt 31h 166

14.6 Protected Mode Interrupt 2Fh 168

14.7 Protected Mode Interrupt 21h 168

14.8 Protected Mode Interrupt 25h 168

14.9 Protected Mode Interrupt 26h 168

14.10 Interrupt E6h . 168

14.11 Interrupt 15h . 168

14.12 Interrupt 13h . 169

14.13 Interrupt 19h . 169

14.14 Interrupt 2Dh . 169

13

14.15 Interrupt 25h . 169

14.16 Interrupt 26h . 170

14.17 Interrupt 21h . 170

14.18 Interrupt 67h . 173

Section 15: Extensions for lDebug reference 174

15.1 LDMEM - Dump lDebug memory use. 174

15.2 HISTORY - Command history utility. 176

15.3 DI - Dump Interrupt vectors. 176

15.4 DM - Dump MCBs. 176

15.5 RN - Display FPU registers. 177

15.6 RM - Display MMX registers. 177

15.7 X - EMS commands. 177

15.8 DX - Dump Extended memory. 177

15.9 INSTNOUN - Operate on INSTALL flag nouns. 177

15.10 RECLAIM - Reclaim unused ELD memory. 178

15.11 ELDCOMP - Compare ELDs with differing linker options. 178

15.12 AFORMAT - Format assembly output. 179

15.13 AMISMSG - Display message received on AMIS interface. 179

15.14 AMOUNT - Provide ELDAMOUNT variable. 180

15.15 BASES - Convert between different numeric bases. 180

15.16 CO - Copy debugger terminal output to a file. 180

15.17 CONFIG - Access debugger config paths. 181

15.18 DTADISP - Displays the current DOS Disk Transfer Address. 181

15.19 IFEXT - Conditionally run a command if an ELD is installed. 181

15.20 KDISPLAY - Displays the current K/N command buffers' content. 182

15.21 LIST - List ELD/SLD files, description lines, sizes, help. 182

15.22 PRINTF - Print formatted output. 182

15.23 SET - Access environment variables. 183

15.24 USEPARAT - Display disassembly separators. 183

15.25 VARIABLE - Expand environment variables. 184

14

15.26 WITHHDR - Run commands with temporary DCO flags set. 184

15.27 AMISCMD - Run commands received on AMIS interface. 184

15.28 AMISOTH - Provide other link info on AMIS interface. 184

15.29 AMITSRS - List currently installed AMIS multiplexers. 184

15.30 BOOTDIR - List directory entries. 185

15.31 DBITMAP - Dump 8-bit-wide graphics from memory. 186

15.32 DOSCD - Change DOS current directory or drive. 188

15.33 DOSDIR - List directory entries. 188

15.34 DOSDRIVE - Get or set a DOS drive. 189

15.35 DOSPWD - Display DOS current directory. 189

15.36 EXTNAME - Guess EXT and Y command filename extensions. 190

15.37 INJECT - Inject commands into other debugger instance. 190

15.38 INSTNOTH - INSTNOUN which operates on other link debugger. 190

15.39 LDMEMOTH - LDMEM which operates on other link debugger. 191

15.40 LINFO - Display status of L command. 191

15.41 PATH - Path search for K/N commands. 191

15.42 EXTLIB - Library of ELDs. 192

15.43 EXTPAK - Compressed library of ELDs. 193

15.44 QUIT - Quit the machine. 193

15.45 DOSSEEK - Get or set the DOS 32-bit seek of a process handle. 193

15.46 ALIAS - Define aliases. 194

15.47 DPB - Display a DOS drive's DPB. 194

15.48 RDumpIdx - Dump text bytes pointed to by DS:SI and ES:DI in R
register dump. 195

15.49 RDumpStr - Dump text pointed to by DS:DX in R register dump. 196

15.50 CHECKSUM - Calculate checksum over a memory range. 196

15.51 HINT - Display TracList hints to outer debugger 196

15.52 HINTOTH - Display TracList hints of the other link debugger 196

15.53 CHSTOOL - Work with int 13h partitions and geometry. 196

15.54 S - Search command with additional support for WILD and CAPS
keywords . 197

15

15.54.1 WILD - Search wildcard 197

15.54.2 CAPS - Search with capitalisation folding 197

15.54.3 UNCAPS - Reset search to do no capitalisation folding 197

15.54.4 S ELD internals . 197

15.54.4.1 S ELD - Byte scan functions 198

15.54.4.2 S ELD - Trailing string comparison function 198

15.55 DOSSPACE - Display DOS drive total and free space 198

15.56 DOSSTRAT - Display DOS memory allocation strategy and UMB
link status . 199

15.57 DHM - Dump HMA Memory Control Block chain 200

15.58 ERRFIX - Fix error message display 200

15.59 RCEXEC - Add RC.EXECUTE command 201

Section 16: Extension for lDebug format 203

16.1 ELD executable format . 203

16.1.1 ELD executable extension header 204

16.1.2 ELD library executable format 205

16.2 ELD instance format . 206

16.3 ELD link info format . 207

16.4 ELD link call table . 208

16.5 ELD linker internals . 209

16.5.1 ELD data macros . 209

16.5.2 ELD code macros . 210

16.5.3 ELD linker sources . 210

16.5.4 ELD two-pass linker 211

16.6 ELD interfaces . 211

16.6.1 ELD code and data buffers 211

16.6.2 ELD command handler 212

16.6.2.1 Procedure for installing ELD command handler 213

16.6.2.2 Procedure for uninstalling ELD command handler 213

16.6.3 ELD command injection 214

16

16.6.4 ELD preprocess handler 215

16.6.5 ELD AMIS handler . 215

16.6.6 ELD multi-purpose puts handler 216

16.6.6.1 ELD multi-purpose puts handler: puts_ext_next
entrypoint . 216

16.6.7 ELD puts copyoutput handler 217

16.6.8 ELD puts getline handler 217

16.6.9 ELD variables . 219

16.6.10 ELD near transfer interface 220

Section 17: Command help . 221

17.1 lDebug help . 221

17.2 INSTSECT help . 221

Section 18: Online help pages . 224

18.1 ? - Main online help . 224

18.2 ?R - Registers . 225

18.3 ?F - Flags . 226

18.4 ?C - Conditionals . 226

18.5 ?E - Expressions . 227

18.6 ?V - Variables . 228

18.7 ?RE - R Extended . 228

18.8 ?RUN - Run keywords . 229

18.9 ?OPTIONS - Options pages 229

18.10 ?O - Options . 229

18.11 ?BOOT - Boot loading . 234

18.12 ?BUILD - lDebug build (only revisions) 236

18.13 ?B - lDebug build (with options) 236

18.14 ?X - EMS commands . 237

18.15 ?SOURCE - lDebug source reference 237

18.16 ?L - lDebug license . 237

Section 19: Comparison of lDebug to MS-DOS Debug 239

17

Section 20: Test Reference . 242

20.1 test_beep . 242

20.2 test_build . 242

20.3 test_rh . 242

20.4 test_dt . 242

20.5 test_rr_status . 242

20.6 test_aa_basic . 242

20.7 test_rr_basic . 242

20.8 test_misc . 242

20.9 test_timeout . 243

20.10 test_int2D_unhook . 243

20.11 test_bb_gg . 244

20.12 test_bb_fill . 244

20.13 test_access_var . 244

20.14 test_dpmimini . 244

20.15 test_dpmioffs . 244

20.16 test_dpmialoc . 244

20.17 test_missing_executable . 245

20.18 test_error_executable . 245

20.19 test_load_boot . 245

20.20 test_yy . 245

20.21 test_double_ctrlc . 246

20.22 test_eee_interactive . 246

20.23 test_rc . 246

20.24 test_ext_extlib . 246

20.25 test_ext_ldmem . 246

20.26 test_ext_aformat . 246

20.27 test_ext_checksum . 246

20.28 test_ext_list . 247

20.29 test_ext_amitsrs . 247

18

20.30 test_ext_reclaim . 247

20.31 test_ext_amount . 247

20.32 test_ext_alias . 247

20.33 test_ext_dosseek . 247

20.34 test_ext_history . 247

20.35 test_ext_amismsg . 247

20.36 test_ext_amiscmd . 248

20.37 test_ext_amisoth . 248

Section 21: Additional usage conditions 249

21.1 GLaBIOS font license (used for dbitmap.eld) 249

21.2 BriefLZ depacker usage conditions 249

21.3 LZ4 depacker usage conditions 250

21.4 Snappy depacker usage conditions 250

21.5 Exomizer depacker usage conditions 250

21.6 X compressor depacker usage conditions 250

21.7 Heatshrink depacker usage conditions 251

21.8 Lzd usage conditions . 251

21.9 LZO depacker usage conditions 251

21.10 LZSA2 depacker usage conditions 252

21.11 aPLib depacker usage conditions 252

21.12 bzpack depacker usage conditions 253

Source Control Revision ID . 254

19

Section 1: Overview and highlights

lDebug is a 86-DOS debugger based on the MS-DOS Debug clone FreeDOS Debug. It features
DPMI client support for 32-bit and 16-bit segments, a 686-level assembler and disassembler,
an expression evaluator, an InDOS and a bootloaded mode, script file reading, serial port
I/O, permanent breakpoints, conditional tracing, buffered tracing, auto-repetition of some
commands, and a number of extensions. There is also a symbolic debugging option being
developed.

1.1 Quick start for reading this manual
• The interface reference (section 6) explains the basics of the debugger's interface and lists

some common commands.

• The parameter reference (section 8) lists the types of parameters used by the available
commands.

• The command reference (section 10) describes most commands in detail.

• The expression reference (section 9) details how numeric parameters are parsed by the
expression evaluator.

• The variable reference (section 12) lists a subset of the debugger's variables and what they
can be used for.

• The assembler reference (section 11) describes the assembly language used by the
debugger's assembler and disassembler some.

• The interrupt reference (section 13) lists what interrupt hooks the debugger sets up.

• The service reference (section 14) lists what services are called by the debugger, which
may be useful for developers of the debugger, or of kernels, ROM-BIOSes, or DPMI hosts.

• The Extensions for lDebug reference (section 15) describes ELDs in some detail.

• The online help pages (section 18) provide some additional descriptions not found
elsewhere in the manual, as well as overviews of many different topics.

• The command help (section 17) lists most of the switches and parameters accepted by the
debugger and the instsect program.

• The news (section 2) lists an overview of changes since prior releases of lDebug.

• Invoking the debugger (section 5) states how to start the debugger, either bootloaded, as a
device driver, as an application, or through the test suite.

• Building the debugger (section 3) lists components, build options, and instructions on how
to build.

20

• Debugging the debugger itself (section 7) lists some considerations for working with
CDebug or DDebug as a debuggee.

• The test reference (section 20) describes the tests that are implemented in the test suite.

• The additional usage conditions section (section 21) lists attribution and licenses for the
various depackers that can be used for the compressed debugger executable.

• Source Control Revision ID gives the Mercurial hash of the manual's source revision, and
links to that revision in ecm's repository.

For a tour, definitely start with the interface reference (section 6). To help invoke the debugger
read the section on ‘Invoking the debugger as an application’ (section 5.2). It may help to read
the manual while testing the debugger on another terminal. Use the main page of the online help
(section 18.1) as a reference to what is possible, then check the command reference (section 10)
for details. To explain what parameter types are used refer to the parameter reference (section
8). For how to calculate refer to the expression reference (section 9).

Reconfiguring the debugger can be done using variables, including the
Debugger Assembler Options (DAO) and the Debugger Common Options
(DCO) 1 to 7. Use the variable reference (section 12) and the online help pages on the options
(section 18.9) for those. Change variables using the R commands, such as ‘r dco or= 800 ’
or ‘r ior := #50 ’. Some configuration can be done using theINSTALL command, refer
to section 10.26.

1.2 Some tips for using the debugger
• At a ‘[more] ’ prompt for pagination, entering Ctrl-C aborts the current command and

returns to the debugger command line.

• Use theGTor GNTcommands to skip past conditionals

• UseG ABOto skip past calls or loops ifP would not work

• T, P, G, U, and D commands have autorepeat to repeat the same command if an empty line
(only blanks) is entered after they return control to the debugger prompt

• ThePOINTERtype expression allows using a 32-bit number as a 16:16 segmented address
whereever an address parameter is parsed

• The assembler can access the expression evaluator by surrounding an expression with
parentheses ‘(...) ’

• The A, E, D, and U commands write to the AAO, AEO, ADO, and AUO variables to point
past the end of their last read or write

• The ABO variable points past the last instruction disassembled by an R command

• Permanent breakpoints can be set up using the B commands, including as pass points or
conditionally

• The G command can repeat the prior list by specifying theAGAIN keyword as the first
breakpoint, and can save to the list without actually executing the debuggee by ending the
breakpoint list with aREMEMBERkeyword

21

• T, P, and G commands can change either the instruction pointer only or also the code
segment using an equals-sign-prefixed address as the first prameter. The TTEST command
will change the CS:IP without actually executing anything.

• The machine type can be viewed or changed with an M command. Assembly and
disassembly will note if a required machine level is absent according to the machine type.

• DCO option 800 orINSTALL GETINPUTenables the line editor and input history even
when using DOS for input

• DCO6 option 200 orINSTALL BIOSOUTPUTwill use the ROM-BIOS for output instead
of DOS, including for register change highlighting

• DCO option 8 orINSTALL INDOS will act as if the debugger is always running with the
InDOS flag set, avoiding DOS calls from the debugger itself

• The INSTALL AMIS and INSTALL TIMER commands can be used to provide the
debugger's AMIS interface and hook the timer interrupt

• TheDW ss:csp command is useful to view the current stack formatted as words

• The debugger is largely capitalisation-insensitive

• The LFSR variable allows to generate a stream of pseudo-random numbers

• The DIM command shows MCB names of blocks pointed to by interrupt vectors, while
DIL (or DIML) will query AMIS multiplexers for their interrupt entrypoints to find hidden
chains

• Long output of many commands is paged by default, displaying a ‘[more] ’ prompt that
pauses the output until a keypress is received

• The VALUE IN construct allows to match one numeric value or range against many match
values or match ranges

• A breakpoint can be set up on an interrupt handler by issuing for example
‘BP NEW ptr ri2Dp ’, if the interrupt handler is writeable

• If given a single expression the H command displays the result as hexadecimal and as
decimal

• Decimal numbers can be entered with a# prefix, and binary with2# . Character codes can
be used as numbers with#"..."

• Script files can be run with the Y command

• A program can be traced until it tries to modify interrupts 1 or 3 using
‘ tp FFFFF while ! value from linear 0:1*4 length 3*4 in writing silent ’.
Add a conditional breakpoint like
‘bp new ptr ri21p when value ax in 2501, 2503 ’ beforehand to
intercept DOS calls to change these interrupts. (lCDebug or lDDebug require
INSTALL INDOS to write a breakpoint on the int 21h handler.)

• If at its entrypoint and you want to return from a 16-bit near function, use
‘g word [ss:sp] ’. For a 16-bit far or interrupt function use ‘g ptr [ss:sp] ’

22

• In a loop with several exit conditions, trace with T or P and accumulate exits with
‘G AGAIN address REMEMBER’ (insert an offset or(NOT)TAKENkeywords for the
address), then finally run ‘G AGAIN’

• The L and W commands for reading and writing sectors accept drive letters for their second
parameter, specified with a trailing colon

• The RV, RVM, RVP, and RVD commands will show some information on modes, memory
segment locations, processes, and device headers

• RX toggles the 32-bit register view for the R command

• The RE buffer can contain many different commands, which are run on RE commands or
when T, P, or G initiate a register dump

• The DCO options are described in the full?O help page as well as individual pages like
?O6 for DCO6

• Not sure what version of lDebug is running? The command?BUILD displays the
description and source control revision IDs. The description includes a build date or release
number.

• Setting a breakpoint at the current instruction pointer with the G command will trace past
this instruction once then write the breakpoint and run at full speed

• There's a TSR mode converting the application-mode debugger into a resident program,
allowing to debug the debugger's parent process

• The symbolic F register for the R command allows dumping and modifying the flags using
the abbreviated flag states. Use the?F command to list the meanings of the flag states.

• The R command can modify variables using binary operators suffixed by an equal sign,
both on the command line of the R command as well as after the R variable prompt

• By adding a trailing dot after a variable name for the R command, a variable's value can
be inspected without bringing up a variable prompt that requires submitting a second input
line

• A single dot input can exit any special prompt, such as the interactive enter mode, the
assembler, or the R command variable prompt

23

Section 2: News

2.1 Release 10 (future)
• Uselzexedat -4 for online help compression andlzexedat -4 -l for extpak.eld

compression. This compresses better than heatshrink and depacks faster, heathshrink needs
about 1.5 times the time.

• Change DCO1 200h to be used to disable use of HLT instruction in Real/Virtual 86 Mode
only, and add DCO2 8000_0000h to disable it in Protected Mode. Drop DIF1 flag to do
the same as the latter, as there was no way to clear it.

• Add several S MCB types for lDOS

• Allow kernel command line inBOOT PROTOCOL=command to start with a semicolon
after the second name

• Open DOS file handles used by the debugger with the no-inherit flag so they aren't leaked
to the debuggee

• Add hooks for the errfix Extension for lDebug, to keep track of the error carat display
position

• Fix a minor init bug if application doesn't relocate environment

• Add application switch /TV to not relocate the debugger's environment block to within the
main program allocation (will leave the space reserved for this unused, sorry)

• In instsect's FAT32 loader do proper LBA check, including workaround for the Xi8088 bug

2.2 Release 9 (2024-12-21)
• Enable immediate assembler by default. Implies using dual code segments for the lDebugX

builds.

• Enable heatshrink compression of help pages, and move the depack buffer that it uses into
the message segment. Costs about 300 bytes of code space but saves several KiB of total
resident space.

• Introduce DCO7 option 2000h to forbid flat binary file loading if debugger is resident (after
application mode TSR command or initially when started in device mode). Loading .EXE
and .COM executables as programs while resident was already forbidden in release 8.

• Update the lDOS boot32 loader embedded into instsect.com to use new FSIBOOT5
revision of the loader

• Add two patch areas for use by tsc.eld

24

https://www.bttr-software.de/forum/forum_entry.php?id=21275

• Exclude ELD houdinis (conditional breakpoints) at build time by default

• Add DCO7 flag 1000h to not recreate an empty process in the command loop once an
attached process has terminated.

• Add /R switch to application mode, to reserve memory, and reserve.eld to work with
reserved memory

• Fix DX command AXO variable

• Disable DX command by default, as the code segment ran out of space in the lCDebugX
build. The command can still be used as an Extension for lDebug.

• Add ELD1TAIL trailer header support, so that an ELD may be appended to another file
and the ELD loader will find it by seeking from the EOF

• Add test reference to manual

• Fix, do not eat comma after length number if no length keyword follows

• Add boot load setting DRDOS (same as IBMDOS withmaxpara=-1)

• Allow to boot kernel of up to 29 KiB to linear 00700h by shrinking the stack reservation
below the BPB to 256 Bytes (or 512 Bytes if passing a command line)

• Work around Book8088 / Xi8088 BIOS bug when trying to detect LBA support in
bootloaded debugger

• Fix, allow to run installed ELD commands in the THEN clause of IF commands

• Fix to not corrupt device driver's loader PSP

• Bugfix, correctly parse device driver command line ending in LF

• Add assembler reference chapter to manual

• In assembler disable optimisation from index with scale times 1 to base, now acting like
NASM with nosplit keyword

• Display scale times 1 explicitly in disassembler

• Fix in assembler to always allow blanks after scale

• Add DAO flag 2_0000h to disassemble in NASM style using ECX or CX as second operand
to loop instructions if ASIZE prefix is present, rather than D or W suffix

• Add DAO flag 1_0000h to hideMODRMkeywords

• Match NASM and NDISASM order of operands forxchg with a ModR/M, in both the
assembler and disassembler

• Assemble and disassembleMODRMkeyword to select or indicate non-default forms of
instructions

• Rejectmovzx to 32-bit register with memory source lacking a size keyword

• Allow to assemble displacement size keyword within brackets

25

• In many cases disassemble immediates with a size keyword if they are encoded in a longer
form than needed

• Allow to assembleJMP FAR immwith a single immediate, which becomes the offset
that is combined with the AAS as a segment

• Allow to specifyBYTE 1to assembler to use an imm8 shift/rotate count (the 186+ form)
similar to NASM, and disassemble this with theBYTEkeyword as well

• Optimise to sign-extended 8-bit immediate/displacement when an appropriate 16-bit
value is specified to the assembler (eg ‘adc dx, FFFF ’, ‘ imul dx, dx, FFFF ’,
‘push FFFF ’, ‘ mov dx, [bx + FFFF] ’)

• In assembler allow ‘push [100] ’ or ‘ pop [100] ’ without a size specified, defaulting
to word size (in 86 Mode or a 16-bit CS), or to dword size (in a 32-bit CS for lDebugX).
Disassembler however always shows the size.

• Fix, allow comma between number and length keyword

• lDebugX: Fix BL (breakpoint list) segment output in PM when not matching current CS

• Fix: Parsing a linear address starting with ‘@(’ required two closing parens

• On too long lines of assembler directive DD (using numeric or string data) do not actually
overflow the buffer, rather detect the overflow before the write

• lDebugX: Fix non-terminate PM to 86M switch with the selector in a seg/sel variable (eg
ADS) not on a segment boundary

• lDebugX: Fix PM int 21h function 4Ch on 32-bit stacks

2.3 Release 8 (2024-03-08)
• Fix bootloaded Y :label command

• Add new tools patchqry and patchpro to patch default values in the iniload query patch site
and in the inicomp lCFG block to select a progress display choice (shipping in separate
repo patchini, also provided as current build)

• Added progress displays to compressed executable depackers, set DOS environment
variableLDEBUGPROGRESSto a number: 1 (dots), 2 (percentage), 3 (bar), 4 (bar and
percentage)

• Exomizer on server updated to current git commit, inicomp depacker updated to handle P
& 32 flag

• Fix: Correct drive unlocked after W sector-writing command, and on MS-DOS v7.00 drive
will be locked at all even though int 21h function 7305h is not used

• Fix: Passing a debuggee pathname to the device mode debugger, which is invalid, will no
longer crash the machine and display an error instead

• Added a rel.sh script which will automate the release build. It configures the ELD mak
scripts to not create the XLDs nor eldcomp.eld, and deletes all listing files and many of the
temporary files.

26

• Moved packlib output files into tmp directory rather than bin

• Fix: AMIS description is padded so as to keep most offsets identical between release builds
and daily builds

2.4 Release 7 (2024-02-16)
• Fix bug when specifying BOOT PROTOCOL= with the second file (add file) in a

subdirectory

• Allow to resize history buffer segment in init using the /H= switch

• ELD data blocks can be resized in init using the /Y= switch

• In path search (init or path.eld) skip directories

• Fix boot EXT/Y/BOOT DIR reads when FAT12 entry that straddles a sector boundary is
read

• Support comma separator before program load name

• Add ::empty:: keyword to skip automatic scripts path search in EXT and Y commands

• Enable _EXTENSIONS by default

• Disable _EMS, _RN, and _RM by default

• Optimise application/device init memory use, requires a second init relocation for large
buffers

• Allocate a separate environment block of size 2 KiB for the debugger

• Allow unquoted comma to separate Y and EXT filenames

• Support::scripts:: and::config:: prefixes in boot Y and EXT commands, as
well as the BOOT DIR command

• Enable new NASM warnings to avoid section-crossing near and short branches

• Fix boot file read ending on both a cluster boundary and the End Of File

• Fix int 21h calls with DS != SS.

• Add Extension for lDebug loading and basic interface for linking. Still default disabled at
build time. If enabled, an /X=MAX switch enlarges the ext segment buffer.

• Fix, truncate areas addresses for non-bootloaded mode.

• Fix a bug in /A switch relocation of code section (if layout 2 in use and _PM _DUALCODE
enabled).

• Add /T switch to relocate debugger during init.

• Add a fractional digit to bytes size formatting.

• Fix: In DIL check for valid appearing int 2Dh before calling it.

• Fix: Do not allow DI with two parameters where the second is below the first.

27

• Add INSTALL TOGGLE command.

• Fix INSTALL command with AREAS keyword followed by another keyword.

• Fix: DIL command was broken since addition of the /A switch (enlarge auxiliary buffer)
due to using wrong segment.

• A single list parameter can be specified with different sizes, switching back and forth using
‘AS size ’ keywords.

2.5 Release 6 (2023-08-26)
• Add length keywords PAGES, KiB, MiB, GiB

• Call DOS_HELPER_PRESTROKES_START dosemu2 helper service

• Add byte length variables DENTRYLEN, DSTACKLEN, DMESSAGELEN,
DCODE1LEN, DCODE2LEN, DAUXBUFLEN, DHISBUFLEN. Also DALLOCSEG
and paragraph size DALLOCSIZE.

• Emit warning on unknown filename extension in INIT. Can be disabled with /PW- switch.

• /P switch to guess filename extension and do path search in INIT. /PS for path search only,
/PE for guessing extension only.

• Make interrupt 0Dh, 0Ch hooks a run time option. Add INSTALL nounINTFAULTS to
enable these hooks.

• Add CLEAR command.

• Serial I/O is controlled by an internal variable rather than directly by the DCO option. Fixes
some bugs, such as runningINSTALL SERIAL, TIMER, AMIS .

• In S command result data dump list displacements after the result address to indicate that
the data dumped isafter the match and does not include the match data itself.

• Add ::SCRIPTS:: path keyword for DOS I/O Y command. Also used if a Script for lDebug
file is not found.

• Add H AS SIZE modes to display result using the decimal bytes size display (from DM
command).

• Introduce /A= switch for larger auxiliary buffer in application mode or device mode.

• IOK variable added. Both IOI and IOK will force reading from a terminal now.

• lDebugX fix: In PM, if a segment is limited to 64 KiB, do not attempt to dump S command
result data beyond the limit.

• Introduce the WHILE buffer, and use it also for G command. Also used for S command
and RC./RE.REPLACE, unless it is in use in which case these commands can still use the
auxiliary buffer (if it isn't in use).

• Add RH mode and RH command (none, one, two, or IN parameters). This mode uses the
auxiliary buffer, disabling other commands that use it. Add RHCOUNT variable too.

28

• lDebugX fix: Do not corrupt buffered commands when running DX command.

• Fix, set error code if BOOT command attempts to read from 33-bit space using CHS
addressing.

• Add COUNTcommand and variable. S command also sets the variable.

• Add TOP keyword for D, DB, DW, DD, and DX commands.

• Add DCO2 40_0000h for unconditional linebreak before R dump, changed DCO6
8000_0000h to be conditional on int 10h being used and the current column being nonzero.

• Add DCO2 20_0000h for underscores in 32-bit R variable display.

• Add ‘?VERSION’ help page.

• Add ‘END’ keyword to range parameter parsing.

• Add newINSTALL command keywords to aid reconfiguring the debugger.

• Application and device mode will now detect a startup Script for lDebug file, intended for
configuration. The /IN switch disables this detection.

• Bugfix: Y command may have failed due to a line overflow.

• Improve detection of invalid DD commands that may be valid when interpreted as D
commands.

• Display H command remainder if the last operation is a division.

• In getinput allow Ctrl-A (like Home) and Ctrl-E (like End).

• DT command (ASCII table if empty, else text of specified byte values). Additionally, DTT
command (dump text table top half).

• lDebugX bugfix: If dumping for example 8 bytes at 1FFF0h in a large segment the debugger
would loop infinitely.

• AS SIZE keywords for E, F, S strings.

• Added DAO option 400h for MSDebug style opcode field width in disassembly.

• Added DCO2 10_0000h to do some R command variable prompts in MSDebug style.

• Added DCO2 option 8_0000h to display additional blanks in R command register dump
for MSDebug style.

• Added DCO2 option 40000h to treat explicit length 0 as 64 KiB, except U treats it as length
1, to improve MSDebug compatibility.

• Bugfix: In F RANGE command forbid large destination lengths if the source range is
specified in a 16-bit (limit <= 64 KiB) segment without a length specified. Would truncate
the source to up to offset 0FFFFh.

• Quotemarks added as expression separators to improve MSDebug compatibility.

• Add lDebug ad section to manual (in section 19), comparing lDebug to MSDebug and

29

original MS-DOS Debug.

• Allow to read .HEX files. Only record type 00h and 04h used. Can read files larger than 64
KiB, unlike MS Debug.

• Add K command (same as our default N command), and DCO2 options for MS Debug
compatible N command.

• Add RC.ABORT command to allow a Script for lDebug file called from the RC command
line buffer to modify the RC buffer itself.

• Add DCO6 options for style 2 and style 3 alternative flag state dump.

• Add DCO6 option to display a linebreak before R dump.

• New _EXPRDUALCODE build option to save some 5 kB in the first code segment.
Disabled by default.

• Fix: Device mode debugger should not retain an open handle for FDCONFIG.SYS.

• Trying to open theLDEBUG$$device will now cause a critical error.

• Some code in the run exit and entrypoints can be moved into entry segment, saving about
250 bytes in the first code segment.

• DPMI exception entrypoint handlers can be moved into entry segment, saving nearly 300
bytes in the first code segment.

• Fix: When a symbol table is allocated in DOS memory and the debugger quits with a QD
command, the table would stay allocated.

• Add ATTACH command to attach to a PSP, can be used while application mode or device
mode debugger is resident. (Opposite of TSR command.)

• MMX register support in expression evaluator optimised to take up less run time of other
expression terms

• mktables program extended, allowing for builds of the debugger that do not contain table
entries above specified machine level.

• Non-boot-loaded modes now discard the ?BOOT help page, saving 2.7 kB of resident
memory use.

• Refactor to store long help messages in another segment, reducing the pressure of the data
entry segment by 22 kB.

• Fix QC command if not last in container, would corrupt MCB chain

• Application and device driver mode now discard most of the boot loaded mode code, saving
about 9 kB of resident memory use.

• Fix an lDebugX D command bug on non-386 machines

• Add build option _APPLICATION, to create special-purpose builds if disabled. (Not
provided pre-built as yet.)$RESULTEXTvariable for mak.sh can set a filename extension
other than ‘.com ’.

30

• getinput redraw optimised, fewer complete redraws

• Add DCO3 option 0100_0000h to highlight prefix/suffix in getinput if text parts are not
visible

• Improve handling of very narrow displays

• RE.LIST and RC.LIST use the IOCLINE setting now

2.6 Release 5 (2023-03-08)
• Client PSP is now stored internally as a segment, even when lDebugX is in Protected Mode.

DM command now shows this segment rather than a selector. (The PSPSEL variable can
be read for a selector instead.)

• RM command now accepts an optional size keyword

• ‘ IF EXISTS R variable THEN ’ command added

• MMX support of the machine is re-detected after lDebugX switched modes

• Fix: RM command and MMxy variable read and R MMxy variable write work now

• Fix: In /E+ mode a zero word is now pushed to the initial stack

• dosemu2-dumb mode now detected specifically when needed for register change
highlighting to ROM-BIOS interrupt 10h

• Fix: Bootloaded init could have corrupted part of its image during second relocation, if
needed. (This case cannot occur during normal load at 200h:0 on a machine with 512 KiB
or more of available LMA.)

• Fix: Creating a process resets the DTA to PSP:80h

• Fix: ‘R VD’ accesses VD variable, rather than run ‘RVD’ command

• Improvements to support NEC V20 machine

• Add CIP and CSP variables, use CIP for EXECUTING keyword

• Fix error handling if S command search area is shorter than search mask

• IOCLINE variable added to support display on the HP 95LX's narrow screen

• Fix: Stack access variables set wrongly for interrupt instructions

• Fix: In DPMI protected mode QA or Q command sometimes would not work

• Immediate assembler merged. Currently defaults to disabled at build time.

• Bootable lDebug: Allow to access small FAT32 file system (less than 64 Ki clusters)

• Add timer configuration variables and default the SDELTALIMIT variable to 5 to improve
wait performance

• Serial I/O: Add option to always do EOI after calling downlink for IRQ sharing. Autodetect
in KEEP prompt if this option must be used or if IRQ sharing must not be used.

31

• Query patch support for ldosboot iniload can be used to set the BOOTUNITFLx variable
for the debugger load unit

• Change: DCO6 option 200h only makes output go to ROM-BIOS, new DCO6 option
0100_0000h makes all Input/Output use ROM-BIOS. (The 200h flag still allows to read
script files from DOS.)

• lDebugX: Fix, allow to use TSR command in PM (expected a segment where a selector
was read)

• lDebugX: Fix PSP variables and TSR command expecting higher limit in PM
(getsegmented now sets limit 0)

• lDebugX: Fix getexpression not preserving the scratch selector

• Add FL.xF variables to read flag status in expressions, eg FL.CF which reads as 1 if CY
and 0 if NC

• When creating an empty process (eg after QA command) also write the current command
line tail to it (instead of the debugger's internal N buffers)

• Display amount of ancestors for the symsnip revision ID

• A pair of 32-bit E command fixes

• Write AES:AEO (e_addr) in E command and allow E command without an address

• lDebugX: Add DESCTYPE keyword in expressions

• lDebugX: Add descriptor modification commands and DARESULT variable, refer to
section 10.16

• Add XARESULT variable for XA command

• Allow to share the serial IRQ so eg two lDebug instances can be connected to two serial
ports that use the same IRQ, like COM2 and COM4 (both use IRQ #3 by default)

• Do not simulate repeated string scan/compare instructions when disassembling them using
the U command (only do so for R command disassembly)

• Disassembler handles o32/o16 OSIZE prefixes as belonging to push and pop with segregs,
instead of displaying the prefix as ‘unused ’.

• If simulation of repeated string scan/compare instructions is disabled in DAO then the
access variables will now be set up assuming a count of 1, rather than the maximum possible
count.

• Add convenience entrypoints for debuggable mode at CODE:1, CODE2:0, and CODE2:1.
The offset 0 entrypoints will return to the main command loop, called ‘cmd3’. The offset
1 entrypoints will additionally display a linebreak.

• Allow switching lCDebugX to debuggable mode upon putrunint and allow running a
breakpoint early in putrunint.

• Add AMIS private function 33h, provided by lDebugX by default and can be used by
lDDebugX/lCDebugX by default

32

• Add INSTALL and UNINSTALL commands

• Allow to specify length of D command with LINES keyword

• Add DEFAULTDLEN, DEFAULTDLINES, DEFAULTULEN, and DEFAULTULINES
variables to modify default sizes of D and U commands

• Display long numeric constants with underscore separators for readability in online help
pages and documentation

• Allow to disable disassembler memory access for referenced memory and repeated string
instruction simulation, using four new DAO flags

• Change HP 95LX 40-column friendly mode support in the disassembler to use two DAO
flags rather than two DCO6 flags (one of which was shared)

• Allow to specify variable RIxP/S/O/L with x as a single-digit hexadecimal number

• Bugfix: Allow operators between ?? and :: in a ternary operator expression for H command

• Allow to specifySILENT keyword followed by a number before the S command's range
or list, display only up to a certain amount of results

• Add CLR operator, bitwise AND with the bitwise NOT of the right hand operand.
Precedence above bitwise AND.

• Bugfix: Absolute value operator? should always give its result an unsigned type

• Allow switching lCDebugX to debuggable mode upon debugger exception and allow
running a breakpoint early or late in debugger exception.

• Add debugger exception areas to display the cause of a memory access which may fault
in the debugger. Also adds a linebreak for eg referenced memory reads to work in tandem
with the partial disassembler output. (Idea from FreeDOS Debug/X, though there it only
does a linebreak and implements it differently.)

• Bugfix: Disassemble mov with segreg and memory operand always with m16, ignoring the
operand size selected. In assembler never emit an osize prefix and reject an explicitdword
size keyword.

• In disassembler display instruction and referenced memory address before accessing
memory, so partial output is displayed in case a fault occurs in the debugger (FreeDOS
Debug/X pick)

• Document side effects of expression evaluator

• Bugfix, allow all valid address parameter formats for the source address of an M move
memory command (suggested by FreeDOS Debug/X)

• Add AMIS private function 31h to instruct lDebugX to try to install its DPMI hook, make
use of this in lDDebugX and lCDebugX

• Add descriptions of BOOT commands to manual

• Fix HIDDEN= keyword for BOOT READ/WRITE with partition specified, add
HIDDENADD= keyword to modify rather than replace hidden sectors

33

• Fix a bug in BOOT PROTOCOL= command that could disallow use of ENTRY and BPB
parameters if running a non-DPMI build on a 386+ machine

• Avoid faults in the debugger if a code selector with a low limit gets used for writing, eg by
A or E commands

• Fix bug setting wrong debuggee CS limit if _DUALCODE build

• Add variables DSTACKSEG/SEL, DENTRYSEG/SEL, DCODE1/2SEG/SEL,
DAUXBUFSEG/SEL, DHISBUFSEG/SEL, DSCRATCHSEL, DSYM1/2SEL (selector
variables only for lDebugX, symsels only for symbolic lDebugX)

• RVM command shows second code segment if _DUALCODE build

• In C, E, and A commands in PM display original selector, not the scratch selector as
replacement. Variable AAS is also affected by this.

• Fix a bug with different selectors for lDebugX C and M commands (picked from FreeDOS
Debug/X version 2.00)

• Add taken keywords to address parsing, refer to section 8.2. (This effectively adds the
GTandGNTcommands, as well asTTEST=TAKENandTTEST=NOTTAKENto change
(e)ip .)

• Bugfix: Allow entering double-slash to disable second file search for the BOOT
PROTOCOL= command even if no command line follows

• Application /C= switch and kernel command line will now skip leading blanks following
a semicolon that is converted to a linebreak

• Modify serial interrupt handler to pass on interrupt call if the PIC does not indicate an
interrupt in the In-Service Register (ISR)

• Add /M switch and interrupt 7, 0Ch, 0Dh hooks (for R86M exceptions), though build
options for all of them are disabled by default

• Add force BPB CHS geometry (4) and force LBA access (2) flags to theBOOTUNITFLx
flag variables

• Add switches /F and /E

• Allow zero as parenthetical partition specification, allow to access partition
u(bootldpunit).(bootldppart) if LDP is equal to FDA

• Bugfix: Reading with BOOT command that crossed 64 KiB DMA boundary would copy
too much or too little from the sector segment to target

• Start of HP 95LX support (NEC disassembly repeat rules, narrower R/U/D command
output, do not intercept interrupt 6)

• Bugfix: Commandr f . no longer displays garbage

• Use test_high_limit to check segment limits, to determine whether to use 32-bit offsets in
several spots

34

• Disable calling XMS by Protected Mode far call by default

• Add dual code segment support to allow code size beyond 64 KiB

• Introduce dash prefix to commands to disable symbolic debugging features (no-op if not
symbolic build)

• Introduce U address LENGTH length LINES keyword to disassemble a number of lines
rather than bytes

• Add BS command for swapping permanent breakpoint indices

• Document doubled delimiter quote mark for lists and string literals

• Add string literal escaping of delimiter quote mark by doubling the delimiter quote mark

• Add /2 switch to use alternative video adapter for debugger output if available (pick from
FreeDOS Debug)

• Add ?OPTIONShelp page and specific pages for DCO1, DCO2, DCO3, DCO4, DCO6,
DIF, and DAO

• Set newINICOMP_WINNERbuild variable so as to use lzsa2 compression for current
releases

• Add _DEBUG_CONDbuild option to allow toggling debug mode on and off at run time

• Add INT8CTRL variable which contains number of ticks to wait for Control pressed
entrypoint; set to zero to disable

• Fix: Control-C also aborts RC command buffer execution

• Fix: Default operand forAAMandAADinstructions is omitted in disassembler

• Enhancement: If at the end of a stdin-redirected file the debugger cannot quit it will now
enable InDOS mode and allow the user to control the debugger afterwards

• Fix: Do not crash or loop infinitely upon encountering the end of a stdin-redirected file

• Extract more source files from debug.asm

• Allow appending00 to a 16-bit register name to get a 32-bit value with the register value
in the high word

• Do not cause error from empty/C='' switch

• Use ampersand prompt to display commands run from RC buffer

• When loading a .BIN file set the process's command line buffer the same way as if loading
a .COM file

• Add heading hash links to every heading in the ldebug.htm manual (requires patched
Halibut)

• Add LFSR and LFSRTAP variables

• Run unix2dos on ldebug.txt manual

35

• Add QD (quit from device initialisation) and QC (quit from device in container MCB)
commands

• Add RVD command to display device header address and allocation size, as well as
DEVICEHEADER and DEVICESIZE variables to read same

• Bugfix, on pass or non-pass permanent breakpoint hit while running with T/TP/P command
do not check WHILE condition

• Add PARASkeyword to range length parsing, to multiply a count by 16 (size of a
paragraph)

• Bugfix, should allow to run if int 2Fh is invalid

• Add device-driver mode to allow loading the debugger in CONFIG.SYS

• Fix, do not crash if no UMCB but int 21.5803 works

• Add V commands and /V command-line switch (video screen swapping)

• Add RIxxP variables to read IVT entries in a way suitable to be used asPOINTERtype
expressions

• Work around FreeDOS kernel bug prior to 2022 May so as to fail on loading an empty
executable

• Fix, also use SDA manipulation to change current PSP when lDebugX is in Protected Mode

• Add TERMCODE variable to read int 21.4D return after debuggee process terminated

• Add QB command (run breakpoint late in debugger quit)

• Add RVP command to display debugger mode and current debuggee and debugger process
addresses

• Add (D)PSP|PARENT|PRA|PSPSEL variables

• Do not try to proceed past a call near immediate if the called functions consists of aretf
instruction. (This supports a method for relocation, used for example by the debugger
itself.)

• Add command-line switch /B to run a breakpoint early

• Add RC commands to view, change, and run RC buffer commands, re-using the command
line buffer

• Add MACHX86andMACHX87variables to read machine type

• Allow M machine type command to parse an expression for the machine level number to
set

• Add QA command (try to terminate attached process)

• Fix int 19h and debuggee termination handling. Int 19h in a DOS application mode now
sets up registers to terminate the current process when running the debuggee again.

• Add an lDebugX option DCO3 20_0000 to break on entering PM

36

• Add an lDebugX option DCO3 10_0000 to use a 32-bit stack segment for the debugger
itself (can help compatibility)

• Fix so that semicolon is allowed as End Of Line in getrange

• Fix R size [mem] := val causing a fault in the debugger if value ends in FFFFh

• ImplementPOINTERtypes for handling a 32-bit expression as a 16:16 far pointer

• Implement basic handling of expression types (signed/unsigned)

• Revision IDs in?BUILD command list the amount of ancestors to help to compare
revisions

• Fix a segment addressing bug when switching modes (eg have a breakpoint in a DPMI
allocation while the client is running in 86 Mode)

• Fix some cases of detecting 32-bit offsets incorrectly

2.7 Release 4 (2022-03-08)
• Recognise LF as linebreak in serial input

• E interactive mode fixes:

• Support LF to exit interactive mode (that is, accept Linux style linebreaks)

• Support DEL sent by serial terminal

• In lDebugX correctly handle 32-bit offsets

• Also write new value when minus is entered

• Honour blank for continue to next byte, CR or dot for exit interactive mode

• Always correctly read value even if blank is entered afterwards

• Improve E interactive mode compatibility across different input sources (like stdin
file, script file, serial terminal)

• Display linebreak upon new address displayed

• Fix: Register variable ‘CH’ would be misparsed as ‘CHAR’ type instead of the expected
variable

• Allow DI command to receive an IN value list similar to the y in a VALUE x IN y construct

• Fix: Allow to set a breakpoint on an interrupt 21h handler and do not crash or corrupt
state if the debuggee then terminates. (That is, do not call service 4Dh before restoring
breakpoints.)

• Fix: Too long N command could crash the debugger

• Fix: DDebug TSR quit would not work correctly due to overflowing a rel8jmp

• Add R, M, and L key letters to DI command (always 86 Mode, show MCB names, follow
AMIS interrupt lists)

37

• Fix: R WORD [memory]prompt would not consider the size keyword as part of the input
line prompt

• Add AMIS private function 30h - Update IISP Header

• In DI command in 86 Mode follow IISP headers

• Add QQCODEvariable

• Add BOOT[L|Y|S][UNIT|PART] variables,BOOTUNITFL(x) variables

• Add bzpack compression method

• Drop DPS variable when building without DPMI support

• Fix PSP variables in Protected Mode: PSP is always a 86 Mode segment, PSPS is a segment
or selector, and PPR and PPI work

• Add HHRESULTvariable

2.8 Release 3 (2021-08-15)
• Add workaround with extra int 23h and int 22h handlers and raw mode-switching to use

interrupt 21h service 0Ah in PM. DCO2 flag 800h clear by default.

• Add TRYAMISNUM variable to try a specific AMIS multiplex number first

• Add DCO4 flag 2 to allow disabling lDebugX's int 2Fh hook

• Build option_MEMREF_AMOUNTenabled by default

• mktables switchesdirection andstackhinting enabled by default

• Fix DOS application script file reading to honour InDOS status

• Fix H BASE= command with GROUP= sometimes displaying trailing garbage

• Fix DDebugX hooking random PM interrupts

• Fix trailing blanks in DI command

• Added a number of automated acceptance tests

• Add variableAMISNUMto read the multiplex number

• Fix an old bug in the assembler that happened to make instructions like ‘mov ax, 0 ’ fail
to assemble now

• Made interrupt 8 hook optional, default-off

• Added optional, default-off interrupt 2Dh hook

• Properly unhook interrupts utilising IISP header chains, if the debugger's interrupt handlers
are reachable. Added DCO4 flags (upper 16 bits) to force unhooking if a handler is
unreachable. If a handler is both unreachable and not forcibly unhooked then it stays
hooked. The Q command fails in that case.

38

• Fix to allow ‘$’ prefix to segments in DebugX while in Real/Virtual 86 Mode

• Debugger's 86 Mode entrypoints now use the IBM Interrupt Sharing Protocol header.
(However, it is still assumed that the debuggerownsthe interrupt entrypoints.)

• Add WIDTH=keyword handling toH BASE=

• Introduce variables IOL and IOF to control how many levels of execution are cancelled by
Control-C

• Scripts with CR LF linebreaks at the end or after calling another script no longer cause
superfluous empty lines to be processed

• Control-C aborts script file reading that is in progress

• Bugfix, when calling three nested levels of Y script files while bootloaded then the
outermost script's already buffered content would not rewind properly

• Fix so that Control-C from ROM-BIOS keypress buffer is consumed properly while reading
script file, instead of looping forever

• Check for Control-C in ROM-BIOS's circular keypress buffer, add variables IOS and IOE

• Extend Control-C handling so RE buffer execution is aborted by it

• Add a simpleBOOT DIRcommand (SFN name only, attributes, size (using FAT+),
datetime)

• Add string literals#"..." to expression evaluator

• Add H BASE=command

• Addmerge anddebug switches to mktables. Both are default off for now. Merging means
redundant operand list tails are merged.

• Bugfix, accessing the variable SRC caused an infinite loop

• LZMA-lzip depacker fixed to not usecs xlatb , as the segment override prefix may be
ignored on CPUs below 386

• Added conditional?? :: construct operator

• Merged branchuumemref and made memrefs available in default branch. The build
option_MEMREF_AMOUNTmust be enabled to use them.

• Memory access direction and stack hinting in the assembler and disassembler tables.
Switches nameddirection andstackhinting to mktables program. (Default off
for now.)

• LINEAR term allowed in expressions

• VALUE IN construct allowed in expressions

• Commas are only allowed between expressions, no longer within expressions

• If DCO2 flag 8000h is set during RE buffer execution and SILENT 1 was used do actually
only display last RE output

39

2.9 Release 2 (2021-05-05)
• Documented SLEEP command

• Line editing history for raw terminal/serial input (in a fixed segment of size 8 KiB currently)

• Fix missing register dump after T/TP/P which ends up matching a non-pass non-hit
breakpoint

• Fix: Entering a literal as 3#102002022201221111211 or #4294967296 would overflow
silently to zero instead of causing an error

• Reset high words of EIP and ESP when trying to terminate client process

• Add change highlighting to R register dump

• Assembler internals: Allow ASM_ESCAPE usage when needed

• If BL command is given an unused index do not display incorrect WHEN

• Reset segment registers when trying to terminate client process

• Handle unusual SIB bytes correctly in P command's disassembly

• Bugfix, Y script file called by another Y script file would turn quiet

• Bugfix, if permanent breakpoint WHEN condition was in use then the wrong index and ID
would be displayed in the pass/hit message

• Acknowledge IRQ to secondary PIC too if applicable (if using a high IRQ for the serial
I/O interrupt)

• Bugfix, in BOOT commands do not prepend a word to the auxbuff anymore

• Only create manual in HTML, text, and PDF formats

• Add files doc/fdbuild.txt and doc/LDEBUG.LSM for FreeDOS packages

• BOOT: work around qemu bug with ‘LOOPNZ’

• BOOT: retry CHS reads up to 16 times

• Add instsect and lDebug command help to manual

• Expression evaluator allows ‘OR=’ as synonym for ‘|= ’ (especially useful if shell does not
allow specifying pipe symbol for /C)

• Assembler: Allow specifying ‘LOOPxx destination, (E)CX ’ as in NASM
instruction reference to specify address size

• For assembler allow specifying ‘INT BYTE 3’ to get CDh encoding and display it this
way in disassembler

• Only adjust offset saved in PSP's SPSAV variable if it points to our stack

• In assembler do not allow sizeless memory operand when immediate matches IMMS8 (eg
‘add [100], 12 ’)

40

2.10 Release 1 (2021-02-15) and earlier
• ‘G REMEMBER’ command to work with the saved temporary breakpoint list

• WHEN conditions for permanent breakpoints

• RIxxO/S/L variables (read-only view of IVT entry)

• 3BYTE type for ‘R var ’ and indirection in expression evaluator

• In disassembler handle unusual SIB byte contents correctly

• IDs for listing permanent breakpoints

• In disassembler correctly dump far memory operands, double memory operands
(BOUND), and do a32 addressing

• Add ‘S range REVERSE’ command

• Fix corner case of S command: The commands ‘f 100 l 10 0 ’ \ ‘ s 100 l 10 0 ’
should result in 16 matches

• SROx and SRC search result variables

• SLEEP command

• H command displays decimal numeric value (when given a single expression)

• In disassembler display WORD keyword when o16 in 32-bit CS

• Bugfix, in XR do not skip first digit of allocation size

• G and T/TP/P breakpoints work reliably in DebugX when the client enters, leaves, or
switches from/to Protected Mode

• F and S command allow accepting ‘RANGE’ specifications for source data

• Add TTC/TPC/PPC default step counts for T/TP/P commands

• DW/DD commands to dump memory in words or doublewords

• Manual added (this document)

• RE buffer execution to run almost arbitrary commands when T/TP/P/G intend to dump
register contents

• Conditional control flow with IF and GOTO in a script file

• /C command line option to pass commands to the debugger on startup

• In assembler allow specifying SHORT/NEAR/FAR for jumps and calls

• Script file reading

• Pass point functionality (inspired by DR-DOS's SID) using counters

• G LIST command to list the saved temporary breakpoint list

• Auto-repetition for G command, G AGAIN command

41

• DebugX's DPMI entrypoint hooking automatically checked instead of always avoiding it
on MSW and dosemu

• Serial port I/O, with defaults (for COM2) that can be reconfigured using debugger variables

• Permanent breakpoints

• Buffered tracing using ‘P/TP/T ... SILENT ’ which writes to an internal buffer during
the run then replays the last entries from it upon finishing the run

• TP command which is like T except it handles repeated string operations like P

• DM command lists MCB sizes in decimal Bytes/KiB

• Conditional tracing using ‘P/TP/T ... WHILE ’ conditions

• L and W commands allow drive letters instead of numbers

• Bootloaded mode and its BOOT commands

• NASM style address disassembly, blanks after commas, keywords uncapitalised

• TSR mode and command to enter it

• R command allows treating flags (CF, ZF, etc), debugger variables, registers, and memory
variables (byte, word, 3byte, dword) as variables

• Conditional "jumping" and "not jumping" notices in register dump's single-line
disassembly

• Options DCO1, DCO2, DCO3, DAO to modify some behaviour

• Extended online help pages

• _DEBUG option which swaps the exception handlers and thus allows debugging most of
the debugger itself (_DEBUG builds are not included in the package and have to be created
by building them specifically)

• Arbitrary unsigned 32-bit expression evaluator

• Paging for long command output

• Usage conditions changed to Fair License (having asked Paul Vojta and received his
confirmation), prior conditions also allowed as alternatives

42

Section 3: Building the debugger

Building lDebug is not supported on conventional DOS-like systems. (DJGPP environments
may suffice but are not tested.) Assembling the main debugger executable may require up to 1
GiB of memory.

3.1 Components for building
The following components are required to build with the provided scripts:

• bash - to run mak* scripts

• perl - to patch binaries (overwrite unused revision IDs) and to filter reproduce dt file
contents

• grep - to detect whether boot loading is in use, and to export variables

• sed - to filter dosemu2 output

• hg (Mercurial) - to retrieve revision IDs

• wc - to count amount of ancestors

• GNU time - when $use_build_time is enabled, to display main assembler run's memory
use and wall time

• python - to run hg and to run the test suite

• C compiler - to compile supporting programs

• dosemu2 - to run build decompression tests (optional)

• qemu - to run build decompression tests (optional)

• nasm - to assemble. NASM versions to choose:

• NASM versions up to 2.07 fail -- ‘%deftok ’ is not supported

• NASM versions prior to 2.09.02 fail -- ‘%deftok ’ is implemented wrongly

• NASM version 2.09.02 works (last tested 2019-11)

• NASM versions 2.09.03 to 2.09.10 all fail -- ‘%assign %$foo%[bar] quux ’
doesn't function right

• NASM version 2.10.09 works (last tested 2019-11)

• NASM version 2.14.03 works (last tested 2020-12)

• NASM version 2.15.03 works (last tested 2020-12)

43

• NASM version 2.16 (current git head) fails, due to a bug with %strcat and a bug with
%assign ?%1 and a bug with %00

• (As of 2022-08-23) Current git head with a patch for the %strcat bug and with a patch
for the %00 bug works (last tested 2022-08)

• NASM version 2.16rc10 works (last tested 2022-11)

• Upcoming NASM version beyond 2.16.01 works (last tested 2023-07), with a patch
to fix a major memory leak

• lzexedat.sh - to build compressed extpak.eld and online help pages (lzexedat can also be
used to compress the inicomp stage payload)

• alternatively: heatshrink - to build compressed extpak.eld and online help pages (heatshrink
can also be used to compress the inicomp stage payload)

• halibut - to build this manual, with a patch to include the hash links next to section names

• supporting programs:

• mktables (included in debugger source)

• tellsize (included in separate repo called tellsize)

• mktmpinc.pl (included in separate repo called mktmpinc, to create temporary include
files, optional)

• crc16-t/iniload/checksum (included in separate repo called crc16-t, to add
checksumming, optional)

• a 86-DOS kernel and shell (to run build decompression tests or the test suite, optional)

• additional sources (must be referenced in cfg.sh or ovr.sh):

• lmacros (macro collection)

• scanptab (partition table scanning for bootable debugger)

• ldosboot (iniload frame for bootable debugger, boot sector loaders, checkpl if using
new style checksumming)

• instsect (application to install boot sector loaders)

• bootimg (to run decompression test with qemu and create boot image for qemu to use
for the test suite)

• inicomp (if to use compression support), also needs one of:

• brieflz (blzpack)

• lz4

• snappy (snzip)

• exomizer -- recommended as this usually results in the smallest files

• x-compressor

44

https://bugzilla.nasm.us/show_bug.cgi?id=3392732
https://bugzilla.nasm.us/show_bug.cgi?id=3392733
https://bugzilla.nasm.us/show_bug.cgi?id=3392733
https://bugzilla.nasm.us/show_bug.cgi?id=3392803
https://github.com/netwide-assembler/nasm/pull/25#issuecomment-1186217590
https://bugzilla.nasm.us/show_bug.cgi?id=3392803
https://bugzilla.nasm.us/show_bug.cgi?id=3392892
https://github.com/ecm-pushbx/halibut/commit/1ccc3ac

• heatshrink

• lzip -- usually even smaller than Exomizer but takes longer to decompress

• lzop

• lzsa -- default choice, one of the fastest depackers

• apultra

• bzpack

• lzexedat (part of ecm's lzexe fork)

• crc16-t/iniload (if to add checksumming)

• symsnip (only if symbolic option is enabled)

3.2 How to build
1. Clone the mercurial repo from https://hg.pushbx.org/ecm/ldebug or in an existing repo use

‘hg pull ’ to update the repo

2. Update the repo with ‘hg up ’ or ‘ hg up default ’ or any other available commit you
want to build

3. Clone the other needed repos from https://hg.pushbx.org/ecm/ or in existing repos use
‘hg fetch ’ or the sequence of ‘hg pull ’ then ‘hg up ’ to update the repos. (Usually
the additional source repos do not have multiple branches.)

4. Copy the ldebug/source/cfg.sh file to ovr.sh in the same directory

5. Edit ovr.sh to point to the repos

6. Edit INICOMP_METHODin ovr.sh to select none, one, or several compression methods.
Surround multiple values with quotes and delimit with blanks. If the value "none" is used no
compression will occur. If several values are given the smallest of the resulting files will be
used as theldebug.com result. This favours LZMA-lzip (lzd) and Exomizer 3 (exodecr)
compression as they result in the best ratios. The uncompressedldebugu.com file will
always be generated, you can rename or copy or symlink it to use it asldebug.com if
you want.

7. If you have dosemu2 or qemu, you may enable theuse_build_decomp_test option
by setting it to a nonzero number. This insures that the compressed executables will
actually succeed in decompression when entered in EXE mode, and will lower the required
minimum allocation given in the EXE header to the minimally required value so that
decompression will still succeed. This defaults to using dosemu2, which must have a DOS
installed that allows filesystem redirection.DEFAULT_MACHINEcan be used to select
qemu instead. The optionsBOOT_KERNEL, BOOT_COMMAND, andBOOT_PROTOCOL
must be set up then to allow building a bootable diskette. (This is needed because qemu
does not offer filesystem redirection for DOS.)

8. If use_build_decomp_test is enabled, you may also enableINICOMP_PROGRESS
(again by setting it to a nonzero number). This enables code for a progress display during
depacking of a compressed executable. The default for application mode and device driver

45

https://hg.pushbx.org/ecm/ldebug
https://hg.pushbx.org/ecm/

mode is to not display the progress indicator. Setting the (DOS) environment variable
LDEBUGPROGRESSto a value between 1 and 4 will enable the indicator. This is now
enabled by default in release and current daily builds.

9. Edit INICOMP_WINNER to name one method or the keyword ‘smallest ’ or
‘ fastest ’. The latter requiresuse_build_decomp_test to be enabled, as well as
to set the variableINICOMP_SPEED_TESTto a nonzero number. This number specifies
how often to decompress the image during the decompression timing test. A number of 16
or higher is recommended.

10. Theuse_build_revision_id option is by default on. It requires that the sources are
in hg (Mercurial) repos and that the hg command is available to run ‘hg id ’. The resulting
revision IDs are embedded into the executable and will be shown for the ?B (long) and
?BUILD (short) commands.

11. In ovr.sh you can also specify which tools to use. For example, the variable$NASMspecifies
the nasm executable to use, with path if needed.

12. If you want to rebuild debugtbl.inc you should compile mktables then run it. While in the
ldebug/source directory, run ‘./makec ’ (or use whatever C compiler to build mktables)
then ‘./mktables ’ next. Note that mktables only needs to be used if either the source
files (instr.*) changed or the mktables program itself has been altered. If the assembler and
disassembler tables are not to change then mktables need not be used.

13. Finally, run ‘./mak.sh ’ from the ldebug/source directory. You may pass environment
variables to it, such as ‘INICOMP_METHOD=exodecr ./mak.sh ’ to select Exomizer
compression. You may also pass it parameters which will be passed to the main assembly
command, such as ‘./mak.sh -D_DEBUG4 ’ to enable debugging messages.

The mak.sh script expects that the current working directory is equal to the directory that it
resides in. So you'll always want to run it as ‘./mak.sh ’ from that directory. The same is true
of the make* scripts.

The make* scripts work as follows:

make

calls mak.sh to create debug and debugx

maked

calls mak.sh to create ddebug and ddebugx

maker

calls mak.sh to create only debug

makerd

calls mak.sh to create only ddebug

makex

calls mak.sh to create only debugx

makexd

46

calls mak.sh to create only ddebugx

ldebug/tmp, ldebug/lst, and ldebug/bin will receive the files created by the mak script. The
following filenames are for the default when running mak.sh on its own which is to create
debug. (When ddebug, debugx, or ddebugx are created, the names change accordingly.) In the
ldebug/bin subdirectory,debug.com will be a nonbootable executable (even if the_BOOTLDR
option is enabled). This executable can safely be compressed using EXE packers such as the
UPX. (In cfg.sh the optionuse_build_shim now controls whetherdebug.com is created.
It defaults to disable this output file.) If the_BOOTLDRoption is enabled,ldebug.com
will be a compressed bootable executable (if any compression method is selected), whereas
ldebugu.com will be an uncompressed bootable executable. These bootable executables
must not be compressed using any other programs. Doing that would render the kernel mode
entrypoints unusable. Incidentally, UPX rejects these files because their ‘last page size’ MZ
EXE header field holds an invalid value.

The bootable executables can be used as MS-DOS 6 protocolIO.SYS , MS-DOS 7/8IO.SYS ,
PC-DOS 6/7IBMBIO.COM, EDR-DOSDRBIO.SYS, FreeDOSKERNEL.SYS, RxDOS.3
RXDOS.COM, or as a Multiboot specification or Multiboot2 specification kernel. In any kernel
load protocol case, the root FS that is being loaded from should be a valid FAT12, FAT16, or
FAT32 file system on an unpartitioned (super)floppy diskette (unit number up to 127) or MBR-
partitioned hard disk (unit number above 127). In addition, the bootable executables also are
valid 86-DOS application programs that can be loaded in EXE mode either as application or
as device driver. (Internally, all the .com files are MZ executables with a header, but they are
named with a .COM file name extension for compatibility.)

It is valid to append additional data, such as a .ZIP archive, to any of the executables. However,
if too large this may render loading with the FreeDOS or EDR-DOS load protocols impossible.
All the other protocols work even in the presence of arbitrarily large appended data.

3.2.1 How to build the mktables program and the debugger tables

The mktables tool is a C program that prepares the debugger assembler/disassembler tables from
three input files. The input files are:

instr.set

Instruction set, mapping mnemonics to opcodes and instruction keys

instr.key

Instruction keys, each one specifying a list of operand types

instr.ord

Instruction orderings, specifying which keys must be preferred by the assembler

The output files are:

debugtbl.inc

Receives the tables

debugtbl.old

Receives prior output file

47

debugtbl.tmp

Used during building the tables

As mentioned, mktables only needs to be built and ran if any of the input files, or mktables itself,
or the mktables options have changed. The debugger's hg repo carries a copy of the current full
default tables so running mktables is usually not needed.

The following options are available:

[no]direction

Enables or disables memory access direction operands. These operands tell the
disassembler whether a memory operand is a source, a destination, or both. This option is
on by default.

[no]stackhinting

Enables or disables stack access hint operands. These operands tell the disassembler that
an instruction represents a stack push, stack pop, or stack special operation. This option is
on by default.

[no]merge

Enables or disables merging redundant tail operand lists. This is a small optimisation of
the operand list tables. This option is on by default.

[no]debug

Enables or disables debugging output. This option is off by default.

filename

Followed by a filename argument. The indicated file is used as output file instead of the
default ‘debugtbl.inc ’.

[no]offset

Enables or disables offset comments in output tables. Disabling them makes it easier to
find changes between different tables without the noise added by them. This option is on
by default.

[no]discardunused

Enables or disables discarding unused operand lists. Enabling helps optimise the output
tables, particularly when a machine limit is in use. This option is on by default.

8086 , 186 , 286 , 386 , 486 , all

Limit tables to include only instructions up to the specified machine type. Default is ‘all ’.

mktables is built using a C compiler. OpenWatcom and gcc should both work. An example to
build mktables on a DOS host with OpenWatcom is:

wcl -ox -3 -d__MSDOS__ mktables.c

An example to build mktables with gcc on a Linux host:

48

gcc -xc MKTABLES.C -o mktables -Wno-write-strings -DOMIT_VOLATILE_VOID

3.2.2 How to build the instsect application

1. Clone the mercurial repo from https://hg.pushbx.org/ecm/ldebug or in an existing repo use
‘hg pull ’ to update the repo

2. Update the repo with ‘hg up ’ or ‘ hg up default ’ or any other available commit you
want to build

3. Clone the other needed repos (lmacros, ldosboot, instsect) from https://hg.pushbx.org/ecm/
or in existing repos use ‘hg fetch ’ or the sequence of ‘hg pull ’ then ‘hg up ’ to
update the repos. (Usually the additional source repos do not have multiple branches.)

4. Copy the ldebug/source/cfg.sh file to ovr.sh in the same directory

5. Edit ovr.sh to point to the repos

6. In ovr.sh you can also specify which tools to use. For example, the variable$NASMspecifies
the nasm executable to use, with path if needed.

7. Finally, run ‘./makinst.sh ’ from the ldebug/source directory. You may pass
environment variables to it. You may also pass it parameters which will be passed to the
assembly commands.

The makinst.sh script expects that the current working directory is equal to the directory that it
resides in. So you'll always want to run it as ‘./makinst.sh ’ from that directory.

ldebug/tmp, ldebug/lst, and ldebug/bin will receive the files created by the makinst script.
ldebug/bin/instsect.com will be the instsect application, which has boot sector loaders for
FAT12, FAT16, and FAT32 embedded. The default protocol is lDOS and the default kernel name
LDEBUG.COM. Read the instsect help page for instructions on how to use it. Refer to section
17.2 for the instsect help. The help can also be obtained by runninginstsect.com /?
from DOS. The kernel name can be modified with the/F= switch to instsect. For instance,
‘ instsect.com /f=lddebugu.com a: ’ installs the loader onto drive A: with the name
set up to load the uncompressed lDDebug.

Current lDOS boot32 uses the FSIBOOT4 protocol for an additional stage. This is interoperable
with the upcoming RxDOS version 7.25's use of the FSIBOOT4 protocol, as well as with loaders
that use a different sector for their additional stage (like Microsoft's), or those that do not use
an additional stage (like FreeDOS's).

3.2.3 How to prepare the test suite

The test suite (test/test.py) by default uses qemu. (dosemu2 tends to need more than 5 seconds
to start while qemu manages in 2 seconds or less.)

If the debugger is run as a DOS application and qemu is used then a boot image containing a DOS
kernel, shell, autoexec.bat, and quit program must be created. If the build option use_build_qimg
is enabled then calls to mak.sh will create such an image. The script file makqimg.sh carries out
this task.

If the debugger is run as a DOS application and dosemu2 is used then the DOS installed in
dosemu is used. The -K and -E switches to dosemu2 are used to mount a host directory and
execute the debugger.

49

https://hg.pushbx.org/ecm/ldebug
https://hg.pushbx.org/ecm/

If the debugger is bootloaded (in either qemu or dosemu2) then a boot image with only
the debugger executable and a startup boot script file must be created. If the build option
use_build_bimg is enabled then calls to mak.sh will create such an image. The script file
makbimg.sh carries out this task.

The test script creates symlinks to bin/ and tmp/qemutest/ and tmp/bdbgtest/ on its own. It can
be executed from any directory, as it should find its files based on its own location. The test suite
uses pseudoterminals, qemu or dosemu2, and the default Python unittest module.

Some tests may require having executed the script file test/scripts/mak.sh from within the
test/scripts directory. When booting the debugger or using qemu, this must be run before
makbimg.sh or makqimg.sh is run.

The DPMI tests currently require manual setup, with a directory test/dpmitest/ containing the
dpmitest programs (for dosemu2) or a diskette image test/dpmi.img containing the programs as
well as the HDPMI host executable (for qemu).

3.3 Build options
_DEBUG

Make the program debuggable. A ‘D’ is usually prepended to the program name. This
means that the program's handlers are only installed within the functionrun , and are
uninstalled within the functionintrtn1_code or intrtn1_entry.code . This
allows debugging everything except this section. This is intended to be used with a default
build of lDebug as the outer debugger. However, there is nothing preventing usage of
a different debugger. To indicate that the debuggable debugger is running, its default
command prompts are prepended by a tilde ‘~’.

(To debug everything including the section fromrun to intrtn1_* , or the DPMI entry
of lDebugX, a lower-level debugger must be used, such as dosemu's dosdebug or other
debuggers that are integrated into emulators.)

_DEBUG_COND

Only takes effect if _DEBUG option is also enabled. Allow to enable or disable debuggable
mode within the same process. A ‘C’ is usually prepended to the program name. To
indicate that the debuggable mode is enabled, the debugger's default command prompts
are prepended by a tilde ‘~’.

The command-line switch /D+ can be used to start up in debuggable mode. /D- instead
insures to start up in non-debuggable mode. The DCO6 flag 100h can be toggled
subsequently to toggle debuggable mode. This DCO6 flag can also be changed using
INSTALL DEBUGcommands.

lDebug with the _DEBUG option disabled accepts a no-op /D- switch. lDDebug with
_DEBUG enabled but _DEBUG_COND disabled accepts a no-op /D+ switch.

_PM

Make the program DPMI-capable. An ‘X’ is usually appended to the program name.
If possible, the interrupt 2Fh function 1687h is hooked and made to return lDebugX's
entrypoint. Otherwise, the initial entry into protected mode must be traced. Upon entry
lDebugX will install itself as if it is the actual client, initialise itself, then set up the original

50

client as if that had entered protected mode. The assembler and disassembler will detect
and support 32-bit code segments. Other commands will also use 32-bit addressing to
allow using 32-bit segments. To indicate that the debugger is in protected mode, its default
command prompt changes from the dash ‘- ’ to a hash sign ‘#’. (lDDebugX or lCDebugX
in debuggable mode prepends its tilde to that resulting in ‘~#’.)

_APPLICATION

Enabled by default. Enables to use the executable as a DOS application. Disabling allows
to save a little memory for a special-purpose build.

_DEVICE

Enabled by default. Enables to use the executable as a DOS device driver. Disabling allows
to save a little memory for a special-purpose build.

_BOOTLDR

Enabled by default. Makes the program support being bootloaded. This additionally
requires the lDOS iniload stage wrapped around the MZ .EXE image of the debugger. The
mak.sh script prepends an ‘l’ to the base filename to create the names for the bootable
files. For building debug, this results inldebugu.com andldebug.com . In bootloaded
mode, I/O is never done using DOS, as if InDOS mode was always on. The DOS's current
PSP is not switched during debugger operation. The MCB chain can only be displayed
using the DM command by specifying the start segment explicitly. The BOOT commands
are supported, refer to section 18.11. Disabling this option allows to save a little memory
for a special-purpose build.

_HISTORY

Enables the line editing history for getinput (ROM-BIOS input or serial input,
DOS input only if getinput enabled). Defaults to on. Size can be specified using
_HISTORY_SIZE. Whether a separate segment is used can be controlled using the
_HISTORY_SEPARATE_FIXED option. Defaults to an 8 KiB separate segment buffer.
Size of a separate segment can now be modified by the init using the DOS device or
application command line switch /H.

_MEMREF_AMOUNT

Indicates number of memref structures to include. Default 4 (on). If enabled without
a value, the default (4) is selected. When enabling this option, you most likely
want to first rebuild the assembler and disassembler tables using the command
./mktables direction stackhinting . (These mktables switches are now
default enabled.) This allows for memrefs to indicate whether an explicit memory
operand is a read or write (direction), as well as for stack accesses likepush , pop ,
call , retn to be recognised in memrefs (stackhinting). Memrefs are initialised
by disassembly. Memrefs can be accessed using the access variables likeREADADR0,
READLEN0, etc. Refer to section 12.19. The access variables are written after an R
command's register dump and disassembly (refer to section 10.37). Access variables can
be accessed using special keywords behind theIN of aVALUE x IN y construct (refer
to section 9.8).

Note that memrefs are not always exact. For instance, accesses by some instructions are not
detected (eglgdt , sgdt , fsave). Some instructions' accesses are not always correctly

51

detected, such asenter with non-zero second operand, string instructions spanning
segment boundaries, or instructions usingss after a write toss that causes disassembly
repetition. Some types of accesses are never detected either, such as GDT/LDT accesses to
load descriptors. The stack access of software interrupt instructions is correctly detected
only when tracing interrupts (Trace Mode set to 1, refer to section 10.50); if the interrupt
call is proceeded past then like any proceeded-past function call it may use more stack
space.

_SYMBOLIC

Enables the symbolic debugging support. This currently defaults to off. Documentation
about the symbolic debugging support is still lacking. This may require the _DUALCODE
build option to be enabled.

_IMMASM

Enable the immediate assembler. Refer to section 10.4. This currently defaults to off. This
may require the _DUALCODE build option to be enabled.

_DUALCODE

Enable the second code segment of the debugger. Most of the symbolic and immediate
assembler code will be put into the second code segment if it is enabled. Currently defaults
to on if both _PM and _SYMBOLIC are enabled.

_BOOTLDR_DISCARD

Discard boot loaded mode specific code when installing the debugger as a DOS application
or DOS device driver. This saves about 9 kB of resident memory use. Enabled by default.

_BOOTLDR_DISCARD_HELP

Discard boot loaded mode ?BOOT help page when installing the debugger as a DOS
application or DOS device driver. This saves about 2.7 kB of resident memory use. Enabled
by default. Only takes effect if option _MESSAGESEGMENT is enabled.

_MESSAGESEGMENT

Adds an additional segment for storing long messages like the help pages. This moves
about 20 kB out of the data entry segment. Enabled by default.

_EXPRDUALCODE

Moves most code of the expression evaluator into the second code segment, if
_DUALCODE is also enabled. This moves 5 kB out of the first code segment. Performance
may suffer from this option. Disabled by default.

_SYMBOLASMDUALCODE

Moves most code of the symbols.asm file into the second code segment, if _DUALCODE
is also enabled. Disabled by default.

_CHECKSECTION

Sets default value for the following three options. Disabled by default.

52

_CHECKCALLSECTION

_CHECKJMPSECTION

_CHECKJCCSECTION

These options enable detection of invalid cross-section branches. Enabling all of these
options makes the build take a long time, possibly in excess of two and a half minutes
(versus 30 seconds). Further, memory use of the assembler may as much as triple easily.
(166 MiB seen, versus 66 MiB.) The patch for the %rep leak for NASM versions beyond
2.16.01 is a must for enabling any of these options. These options are not useful if the
_DUALCODE option is not enabled.

_EXTENSIONS

Reserves memory for Extension for lDebug loading and adds the EXT command to load.
(DOS must be available for application mode or device mode. Auxiliary buffer must be
available for bootloaded mode.) The /X= switch to the application mode or device mode
debugger can be used to set the size of the ELD instance code segment. Likewise, the /Y=
switch can be used to set the size of the ELD data area. Enabled by default.

53

https://bugzilla.nasm.us/show_bug.cgi?id=3392892

Section 4: Getting started with the release

The stand-alone and FreeDOS release packages contain the following files:

In thebin or BIN directory:

ldebug.com

Compressed bootable debugger, build without DPMI support

ldebugx.com

Compressed bootable debugger, build with DPMI support

instsect.com

Application to install boot sector loaders, with lDOS loaders that default to load
LDEBUG.COMfrom a FAT12, FAT16, or FAT32 file system

*.eld

Extensions for lDebug

Only in the stand-alone package,bin also contains:

ldebugu.com

Uncompressed bootable debugger, build without DPMI support

ldebugxu.com

Uncompressed bootable debugger, build with DPMI support

In the FreeDOS package,SOURCE/LDEBUG/ldebug/bin contains all the same files asbin
in the stand-alone package. (All files inBIN are duplicated from thisbin directory.) Likewise,
the stand-alone package'stmp , doc , and lst are carried over into the FreeDOS package's
source tree.

Unlike the stand-alone package, the FreeDOS package contains all sources needed to build the
debugger from scratch, except for the build toolchain. The following repos' most recent tip
revisions are copied into theSOURCE/LDEBUGsource tree:

inicomp

Depacker stages for compressed triple-mode executables

instsect

Install boot sector loaders to drives or file system images

54

ldosboot

Boot sector loaders and initial loader stage for kernels (triple-mode executables supported)

lmacros

lDOS assembly macro collection

scanptab

Allow initial loader or bootloaded debugger to scan for partitions

tellsize

Display the allocation size needed by a .big style application image

Thetmp orSOURCE/LDEBUG/ldebug/tmp directory contains subdirectories for each used
compression method. For example, there is a subdirectory namedlz4 . These subdirectories
contain the compressed executablesldebug.com and ldebugx.com built with the
corresponding compression method.

NB: The default choice of compression method (lzsa2) is chosen based on the executable
size and depacker performance. Other compression method choices may be desired. The
uncompressed executables may be used, or those compressed with another method (as found in
thetmp subdirectories).

In thedoc directory, orDOC/LDEBUG:

ldebug.htm

This manual in HTML, preferred form

ldebug.txt

Manual in plain text (with CR LF line endings)

ldebug.pdf

Manual in PDF (only in stand-alone package or source tree)

fdbuild.txt

FreeDOS package build instructions

LDEBUG.LSM

LSM file for lDebug FreeDOS package

In the root directory, or alsoDOC/LDEBUG:

license.txt

Full license texts for lDebug

In theAPPINFOdirectory, only for FreeDOS package:

LDEBUG.LSM

LSM file for lDebug FreeDOS package

55

In the lst or SOURCE/LDEBUG/ldebug/lst directory:

debug.map

Assembly map corresponding toldebug.com andldebugu.com

debugx.map

Assembly map corresponding toldebugx.com andldebugxu.com

instsect.map

Assembly map corresponding toinstsect.com

boot12.map , boot16.map , boot32.map

Assembly maps corresponding to the loaders that are embedded intoinstsect.com

Listing files are no longer shipped with release builds (as of release 8), neither in the stand-
alone package nor the FreeDOS package. To obtain a listing file that will match the binaries of
a release build, one may obtain the daily current build of the same day as the release build. The
only differences should be in the debugger version strings, which are filled to the same size to
avoid changing the offsets of everything.

Alternatively, in thesource directory ‘./make reproduce ’ may be run on a host system
to recreate all artefacts of the build of the main debugger. (Exact identicalised output may require
the same toolchain as originally used.) Likewise, in thesource directory ‘./makinst.sh ’
may be run to recreate the instsect artefacts and in thesource/eld directory ‘./mak.sh ’
to create the ELDs.

56

Section 5: Invoking the debugger

5.1 Invoking the debugger in boot loaded mode
The debugger can be loaded as a variety of kernel formats.

The Multiboot1 and Multiboot2 entrypoints will expect that a kernel command line is provided.
The EDR-DOS, FreeDOS, RxDOS.3, and lDOS load protocols allow specifying a kernel
command line, but it is optional.

If a kernel command line is detected then its contents are entered into the command line buffer.
Unescaped semicolons are translated into Carriage Returns. Semicolons and backslashes may
be escaped with backslashes.

If no kernel command line is given, the debugger assumes a default. It is equivalent to checking
for a file and label using the IF command (section 10.25), then if found to execute that script file.
The IF condition is likeif exists y ldp/LDEBUG.SLD :bootstartup then and
the subsequent script command isy ldp/LDEBUG.SLD :bootstartup (section 10.58).
The filename is howeverLDDEBUG.SLDfor DDebug builds, andLCDEBUG.SLDfor CDebug
builds.

Executing theQ command (section 10.34) makes the debugger uninstall itself then continue
running whatever code the debuggee is in. Executing theBOOT QUITcommand (section 18.11)
makes the debugger attempt to shut down the machine. First it will try to call a dosemu-specific
callback. Next it will attempt shutting down with APM. (This works in qemu.) Finally it will
give up if no attempt worked.

5.2 Invoking the debugger as an application
The debugger is internally an MZ .EXE style application. It may need MS-DOS version 3 level
features. A few switches are supported:

/?

Show the command help page about invoking the debugger. Refer to section 17.1 for a
copy of that help.

/C

Put the text following this switch into the command line buffer. Unquoted unescaped
blanks indicate the end of the text. Parts may be quoted using single quote marks or double
quote marks. Unescaped semicolons are translated into Carriage Returns. Semicolons,
backslashes, quote marks, and blanks may be escaped with backslashes.

/IN

Clear the command line buffer. This switch can be used to discard the default commands

57

placed into the command line buffer. They are intended to load a start up configuration
from a Script for lDebug file, either in the directory specified by the%LDEBUGCONFIG%
variable or in the debugger executable's directory.

/A

Specify auxiliary buffer size. The size may be specified as the keywordsMIN, MAX, a
hexadecimal number, or a hash sign# followed by a decimal number. If a blank follows
directly behind/A this is parsed like/A=MAX. Minimum size is 8208 Bytes, maximum size
is by default 24576 Bytes. The auxiliary buffer currently cannot be resized by the resident
debugger. This switch is processed by the debugger's init.

/S

This switch is only used if the symbolic option is enabled. It can be used to set the size of
the symbol tables early, before loading a debuggee application. Refer to section 10.59.1.

/B

Run a breakpoint within the debugger's initialisation.

/F

Enable/disable treating file as a flat binary. Enable if a blank or plus sign follows this switch.
Disable if a minus sign follows this switch. This controls the DCO6 option 400h. If enabled,
.EXE and .COM files will be loaded as flat binaries even if they contain an MZ executable
header. .HEX files will also be loaded as flat binaries rather than being interpreted to load
the described contents. Writing the files back as flat binaries is also enabled by this. (Note
that the file has to fit into memory for this.) /F implies /E+, but /F+ and /F- do not imply
anything about /E.

/E

Enable/disable setting Stack Segment != PSP for loading flat binaries. Enable if a blank
or plus sign follows this switch. Disable if a minus sign follows this switch. This controls
the DCO6 option 800h. If enabled then loading a flat binary file (with filename extensions
such as.BIN or using the /F switch) will set up a Stack Segment at the end of the process
memory block. That is, in a different segment than the process segment. If disabled, then
flat binaries always get SS = PSP even if that leaves the stack pointing into the binary image.
/F implies /E+.

/V

Enable/disable video screen swapping. Enable if a blank or plus sign follows this switch.
Disable if a minus sign follows this switch. Refer to section 10.54.

/2

Enable/disable using a second display for debugger output. Enable if a blank or plus sign
follows this switch. Disable if a minus sign follows this switch. This option is disabled by
default. If no second display is detected by the debugger, trying to enable this mode causes
an error message. This option can only be enabled by the debugger's init. Therefore there
is no Debugger Common Options flag for this mode.

58

/P

Enable/disable path search and guessing filename extension. Enable if a blank or plus sign
follows this switch. Disable if a minus sign follows this switch. This option is disabled
by default. When enabled, the debugger's init will try to expand the filename passed after
the switches. (This only works during initially loading the debugger. Subsequent N or K
commands will not observe /P+ mode. Therefore there is no Debugger Common Options
flag for this mode.)

If the last component of the filename (after the right-most forward slash, backslash, or
colon) does not yet contain a dot, the debugger will first try to load from the filename as
given. Then it will try to append three different filename extensions in order:.COM, .EXE ,
and.BIN .

If the filename does not contain any path components (indicated by forward slashes,
backslashes, or colons) and no match is found in the current directory, the debugger will
read the%PATH%variable if any. It will then attempt to find a match in every path element
in order. (If the filename does not contain a dot, then for every path element, it is searched
for the filename as-is and then with each of the three extensions added. If all four attempts
fail, the next path element is tried.)

/PE

Enable/disable guessing filename extension, only.

/PS

Enable/disable path search, only.

/PW

Enable/disable warning for unknown filename extension. Enable if a blank or plus sign
follows this switch. Disable if a minus sign follows this switch. This option is enabled
by default. When enabled, the debugger's init will match the filename passed after the
switches to a list of known extensions. (This only works during initially loading the
debugger. Subsequent N or K commands will not observe /PW+ mode. Therefore there is
no Debugger Common Options flag for this mode.)

If the filename is not empty, and if the last component of the filename (after the right-
most forward slash, backslash, or colon) does contain a dot, and the last four text bytes do
not match a known extension, then the warning is displayed by init. The known filename
extensions are:.HEX, .ROM, .COM, .EXE , and.BIN .

/D

This switch is only used for a conditionally debuggable build (lCDebug). Enable/disable
debuggable mode. Enable if a blank or plus sign follows this switch. Disable if a minus sign
follows this switch. This controls the DCO6 option 100h. By default, debuggable mode is
enabled. For lDebug or lDDebug builds (not lCDebug), a no-op /D switch is accepted but
a switch that disagrees with the debuggability of the build is rejected.

After the switches a filename may follow. After the filename, command line contents for the
process to be debugged may follow. These are both passed to the N command. Then, an L
command for loading an application is run.

59

Executing theQcommand (section 10.34) makes the debugger try to terminate the debuggee
application and to then terminate itself. The debugger returns to whatever application called it.

If the TSR command (section 10.51) is used, the debugger patches the parent of the currently
running application to be the debugger's parent. A subsequentQ command will then behave
much like it does in boot loaded mode: The debugger uninstalls itself and continues execution
in the current debuggee context.

The debugger detects its configuration directory as follows:

1. If the environment variableLDEBUGCONFIGis set, read it.

2. Else, if the path to the debugger's executable can be determined, use that.

3. Else, the current directory on the current drive is used.

The command line buffer receives a command that uses the configuration directory. This
command is written before any /C= switch contents.

It is equivalent to checking for a file and label using the IF command (section
10.25), then if found to execute that script file. The IF condition is like
if exists y ::config::LDEBUG.SLD :applicationstartup then and the
subsequent script command isy ::config::LDEBUG.SLD :applicationstartup
(section 10.58). The filename is howeverLDDEBUG.SLD for DDebug builds, and
LCDEBUG.SLDfor CDebug builds. This default command can be disabled using the /IN switch.

5.3 Invoking the debugger as a device driver
The debugger's MZ .EXE style executable can also be loaded as a device driver. Loading as a
device driver requires an MS-DOS version 5 level feature. Namely, the loader has to initialise
and pass the pointer to the end of memory available to the device driver. (The debugger attempts
to detect whether this pointer is passed and indicates enough memory, but it is unclear how well
that works.)

Device drivers can be loaded from CONFIG.SYS using aDEVICE= directive. Other loaders
such as DEVLOAD may work too. (DEVLOAD 3.25 specifically needs a patch to fix some
problems keeping track of memory and to allow DEVLOAD to report more than 64 KiB of
memory available to the device driver.)

DOS device loaders generally convert the device driver's command line to allcaps. To work
around this, the debugger will interpret the exclamation mark in a special way: An exclamation
mark indicates to convert the next letter to a small letter, if it is a capital letter. To pass a literal
exclamation mark, double it.

All command line switches of the application mode are also accepted by the device mode
debugger. (The /T switch is the exception, it is only valid to the application mode.) In particular,
/C= can be used to pass commands to execute. The configuration Script for lDebug file is
detected in the same way as for application mode, except the label used is:devicestartup .

The debugger will start up with debuggee client registers set up from the way they were passed
by the device loader. CS:IP will point to a far return instruction in the debugger's entry segment.
The stack will be preserved from what the device loader passed, too. That means running the
debuggee allows to return control to DOS and have it finish installation of the debugger as a

60

device. Subsequently, DOS and other device drivers and applications can be debugged, just like
when resident in TSR mode.

The device mode debugger can terminate in two different modes. Both require a specific
command letter appended to the Q command.

QD may be used if control did not return to the device loader yet. The debugger checks this
condition by stashing away a copy of all regular registers to compare to their current values.
This includes all GPRs, all segment registers, EIP, and EFL. Also, the debugger's device header
fields for pointing to the next device header are compared to FFFFh. If both match, it is assumed
that we can still modify the request header passed by the device loader. This allows to report
an error and set up an empty memory block to keep, so that the loader will know to discard the
device.

QC may be used if control has returned to the device loader already and the debugger device
has been installed into the system. It requires locating the device header in the chain of devices
that starts with the NUL device in the DOS data segment. It also requires to find the memory
block containing the debugger. It must be either a PSP-alike MCB (self-owned regular MCB
containing exactly the debugger allocation) or an ‘SD’ (System Data) container MCB with one
or more sub-MCBs (one of which contains exactly the debugger allocation). If these conditions
are met, the debugger can be quit. It re-uses parts of the TSR application mode termination.

NOTE: Using QC currently assumes that no system file handles are left allocated to the
placeholder character device that the debugger installs to keep itself resident. This device is
currently called ‘LDEBUG$$’. If this rule is not followed the system might crash.

5.4 Invoking the test suite
Use the test.py script in the test subdirectory. Use the -v switch to do verbose output. Specify
test name patterns to use with -k, or omit to run all tests. (Refer to the Test Reference in section
20 for a list of all tests.)

The script uses the following environment variables:

build_name

Build name to use. Either debug (default), debugx, ddebug, ddebugx, cdebug, or cdebugx.

test_booting

If set to a nonzero number, boot into the debugger. Otherwise, a DOS is loaded and the
debugger is run as an application. Some tests are booting only, some other tests are non-
booting only. The unsupported tests are skipped automatically.

test_initialise_commands

Commands to be executed by the test set up method right after establishing serial
I/O. Semicolons are replaced by Carriage Returns. This should include the command
‘ r dco6 clr= 100 ’ or ‘ uninstall debug ’ if testing lCDebug to disable its
debuggable mode.

test_sleepduration

Floating point number which defines the default sleep duration, in seconds, for read calls
that do not override it. This defaults to 0.05.

61

test_addsleepduration

Floating point number which defines a duration, in seconds, to add to the duration of
overridden read calls. This defaults to 0.0.

DEFAULT_MACHINE

‘qemu’ or ‘ dosemu’ (default is ‘qemu’)

DOSEMU

dosemu executable to use

QEMU

qemu executable to use

DEBUG

If set to a nonzero number, dump all serial I/O and all debugging messages.

The most common reason for random failures is timing. If this is suspected to be the case, the
duration variables allow increasing the time spent waiting on debugger output. They were added
to replace the workflow of editing durations manually in the test script.

62

Section 6: Interface Reference

6.1 Interface Output
The debugger provides a line-based text interface. The interface is written to DOS standard
output by default. If InDOS mode is entered,INSTALL BIOSOUTPUThas been used, or the
debugger is bootloaded then the interface is written to the terminal using interrupt 10h. Serial
I/O can be enabled to write the interface to the serial port.

6.2 Interface Input
The default command prompt indicates that a command may be entered. It is a dash ‘- ’ by
default, or a hash sign ‘#’ when DebugX is in Protected Mode. An exclamation point ‘! ’ is
prepended by a DOS application or device mode debugger (not bootloaded) while DOS's InDOS
flag is set. (This check always uses the actual InDOS flag, ignoring the "force InDOS" mode of
the debugger.) A tilde ‘~’ is prepended for DDebug, or CDebug while in debuggable mode.

If DOS command line input is done usinggetinput (eg if DCO option 800h is set or
INSTALL GETINPUT was run) or the input is from a raw (ROM-BIOS) terminal, or from a
serial port, then the line editing history is enabled. Prior commands may be recalled using the Up
arrow key. The Down arrow key may also be used to reverse the recall. As soon as any prior or
new line is edited the history recall is disabled. To discard the current line and re-enable history
recall, Control-C may be entered.

Long command output may be paged. In that case, once a screenful has been displayed,
a ‘[more] ’ prompt is displayed to pause the output. After pressing any key the output is
continued. If Control-C is pressed, the current command is aborted.

6.3 Enabling serial I/O
Refer to section 12.11 for the serial configuration variables. Setting the DCO flag 4000h enables
serial I/O. This flag can also be set using theINSTALL SERIAL command. Upon enabling
serial I/O a prompt is sent to the serial port. This prompt looks like the following example:

lDebug connected to serial port. Enter KEEP to confirm.
=

(The name of the debugger is modified to indicate DebugX, DDebug, DDebugX, CDebug, or
CDebugX. The prompt indicator is ‘~= ’ for DDebug or CDebug while in debuggable mode.)
If the keep prompt is successfully displayed by the serial terminal and is responded to with the
requested ‘KEEP’ keyword then serial I/O is established.

If the confirmation does not occur after a timeout then serial I/O is disabled again. The timeout
defaults to about 15 seconds. In this case the debugger itself clears the DCO flag 4000h.

63

If the DCO flag 4000h is cleared then serial I/O is disabled. The flag can also be cleared using
theUNINSTALL SERIAL command.

6.4 Register dumping

The R command (refer to section 10.37) without any parameters dumps the current register
values. Then it disassembles a single instruction, or occasionally more than one. The register
dump looks like this by default:

-r
AX=0000 BX=0001 CX=58A0 DX=0000 SP=0800 BP=0000 SI=0000 DI=0000
DS=1BEC ES=1BEC SS=35A9 CS=1BEC IP=0140 NV UP EI PL ZR NA PE NC
1BEC:0140 8CC8 mov ax, cs
-

If the ‘RX’ command was used to switch on 32-bit register dumping, then the register dump
looks like this:

-r
EAX=00000000 EBX=00000001 ECX=000058A0 EDX=00000000 ESP=00000800 EBP=00000000
ESI=00000000 EDI=00000000 NV UP EI PL ZR NA PE NC
DS=1BEC ES=1BEC SS=35A9 CS=1BEC FS=0000 GS=0000 EIP=00000140
1BEC:0140 8CC8 mov ax, cs
-

The RE command (section 10.37.1) runs the RE buffer commands. The default RE buffer content
is a single ‘@R’ command. After running the program being debugged, usually the RE buffer
commands are also being run. This includes a step with the T, TP, or P commands. (Section
10.49, section 10.49.1, section 10.33.) It also includes a run with the G command. (Section
10.21.) Further, a permanent breakpoint which is configured as a pass point being passed also
runs the RE buffer commands. (Section 10.7.)

Setting the flags 1_0000 or 4_0000 in the DCO3 variable enables register change highlighting.
(The commandINSTALL RHIGHLIGHT sets DCO3 4_0000.) When output is written to DOS
standard output or to a serial port then ANSI escape sequences are used to highlight. Specifically,
‘ \x1B[7m ’ is used to reverse video and then ‘\x1B[m ’ to reset the colours.

For DOS standard output it may be needed to install an ANSI escape sequence parser.

For serial I/O the terminal connected to the debugger is expected to handle the escape sequences.

If the output is to a terminal using interrupt 10h and DCO3 flag 2_0000 is clear and the terminal
is detected as functional then highlighting is done using interrupt 10h video attributes.

The functionality check is done by calling interrupt 10h service 03h. If the indicated current
column is nonzero then the terminal is considered functional. (Recent dosemu2 in-dumb
terminal mode is detected as not being functional. Current dosemu2 is queried for-dumb mode
directly, and considered not functional if in this mode.)

If this check fails or the DCO3 flag 2_0000 is set then escape sequences are written using
interrupt 10h.

64

6.5 Memory dumping

Another basic command is the D command (section 10.12). It is used to dump memory contents.
For example, to dump part of a program:

-d
1BEC:0140 8C C8 31 DB 05 70 14 50-53 CB 70 03 91 67 BC 45 ..1..p.PS.p..g.E
1BEC:0150 3F 10 C1 6F F9 70 BA 22-7C 71 C3 72 0A 81 0A 81 ?..o.p."|q.r....
1BEC:0160 47 74 68 76 6C 77 32 72-A7 2F BD 78 4B 16 9F 7B Gthvlw2r./.xK..{
1BEC:0170 C9 2B 09 37 0A 81 81 7D-E2 7E AC A0 00 00 00 00 .+.7...}.~......
1BEC:0180 10 49 00 00 0F 00 00 00-00 00 00 00 10 49 00 00 .I...........I..
1BEC:0190 0F 00 00 00 F8 30 80 00-00 00 00 00 80 00 00 000..........
1BEC:01A0 07 00 00 00 07 00 00 00-00 00 00 00 00 00 00 00
1BEC:01B0 00 00 00 00 97 65 00 00-00 00 00 00 00 00 00 00e..........
-

Or, to dump the stack as words:

-dw ss:sp
header 0 2 4 6 8 A C E 0123456789ABCDEF
35A9:0800 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0810 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0820 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0830 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0840 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0850 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0860 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0870 0000 0000 0000 0000-0000 0000 0000 0000
-

6.6 Disassembly

The U command is used to disassemble one or several instructions. Example:

-u
305C:0000 8CD0 mov ax, ss
305C:0002 8CDA mov dx, ds
305C:0004 29D0 sub ax, dx
305C:0006 31D2 xor dx, dx
305C:0008 B90400 mov cx, 0004
305C:000B D1E0 shl ax, 1
305C:000D D1D2 rcl dx, 1
305C:000F E2FA loop 000B
305C:0011 50 push ax
305C:0012 01E0 add ax, sp
305C:0014 83D200 adc dx, +00
305C:0017 83C00F add ax, +0F
305C:001A 83D200 adc dx, +00
305C:001D 24F0 and al, F0
305C:001F 83FA01 cmp dx, +01
-

65

6.7 Loading the debuggee
A program to examine can be loaded using the N and L commands. If the debugger is loaded
as a DOS application with a filename specified in its command line, it will run the N and L
commands on its own.

The N command sets up some buffers internal to the debugger. One of those specifies the
pathname of the executable file to load. The pathname must include the filename extension, if
any. The pathname must be relative to the current directories at the time the L command runs, or
it must be absolute. This is not true of the pathname initially specified on the debugger command
line tail if the debugger switch /P is used. The path Extension for lDebug (refer to section 15.41)
can be loaded to provide extension guessing and path search for later N or K commands after
the debugger has been loaded properly.

The tail of the N command after the pathname is used as the command line tail for a new
debuggee process.

The L command without any parameters attempts to load the program specified to the last N
command into a new process. If the L command does not display any messages this indicates
success.

6.8 Running the debuggee
Once a program is loaded into the debugger it can be run in several ways:

G command

Runs at full speed until a breakpoint is encountered. Temporary breakpoints can be
specified to the G command. Refer to section 10.21.

T command

Traces a single instruction, except for software interrupts which are by default run at full
speed with a breakpoint after them. Refer to section 10.49.

P command

Either runs at full speed with a breakpoint behind the current instruction, or traces a single
instruction. Software interrupts, call instructions, repeated string instructions, and loop
instructions are proceeded past by using a breakpoint. Refer to section 10.33.

TP command

Like the T command except that repeated string instructions are proceeded past like the P
command would. Refer to section 10.49.1.

All run commands support auto-repeat: Submitting an empty line to the debugger (blanks
allowed but no comment) will make the debugger run the last command again. For the G
command auto-repeat, the specified temporary breakpoints will be used again. Refer to section
10.1.

Permanent breakpoints can be set up and changed using the B commands. They can be
configured to behave as pass points as well. Refer to section 10.7.

The ?RUN help page in section 18.8 lists some additional features of the T, P, and TP commands.

66

6.9 Help
The online help can be accessed using the ‘?’ command. Refer to section 18 for copies of the
online help.

67

Section 7: Debugging the debugger itself

There are debuggable builds of the debugger, called lDDebug (unconditionally debuggable) and
lCDebug (conditionally debuggable).

The debuggable mode works by installing the mandatory interrupt handlers of the debuggable
debugger only within the ‘run ’ function, so as to return the control flow to this instance when it
runs its debuggee code. On return into this instance, it uninstalls its mandatory handlers again.
This mechanism allows to debug most of the debugger using a different instance of lDebug (or
potentially another debugger).

In debuggable mode, an additional command is supported, the BU command (which stands for
"Break Upwards"). It will run a breakpoint within the debugger's code segment which will break
into the other debugger. Its code was updated so it will break at the command dispatcher after
the label cmd4. This means if the outer debugger is also an lDebug then it can be instructed to
skip to the next command being dispatched by entering the command ‘G ip ’.

lDDebugX (or lCDebugX) can also install its exception areas into the other lDebugX instance.
For this, the other debugger needs to have run an ‘INSTALL AMIS ’ command. Then the
debuggable debugger can run its ‘INSTALL AREAS’. Afterwards, faults in the debuggable
debugger will make the other lDebugX indicate the area of the fault.

After lDebugX has caught a fault in the CODE or CODE2 segment, it can be instructed to resume
the lDDebugX (or lCDebugX) command input loop (cmd3) by running a ‘G=0’ command. If
‘G=1’ is used instead, an additional linebreak will be displayed by the debuggable debugger
before it starts prompting for input. This is useful if the fault occurred with some partial output
currently displayed. The offset 0 and offset 1 entries are also supported by non-DPMI builds
and can of course be used at any point in time other than after a fault, too.

There are some DCO6 flags to control breakpoints and entering lCDebug's debuggable mode in
the functions debuggerexception and putrunint. They can be displayed using a ‘?O6’ command.

Other than for the most trivial sessions it is recommended to control the outer debugger by serial
I/O, separately from the I/O of the debuggable debugger. If the latter also should be controlled
by serial I/O then two different ports can be used. The terminal connected to the outer debugger
can also be set up for TracList, the lDebug companion application which traces a listing file. For
instance, if lDDebugX is to be traced, TracList should be run with the ldebug/lst/ddebugx.lst
listing file.

7.1 Initialising the debuggable debugger
To allow the debuggable debugger to relocate and initialise its code sections, the outer debugger
should generally start running the debuggable debugger with a plain ‘G’ command. The
debuggable debugger can then return control to the outer debugger using its ‘BU’ command.

If the initialisation of the debuggable debugger is to be debugged, the ‘/B ’ switch may be of use.

68

Otherwise, note that the NEC V20/V30 and 486 CPU detections may fail when traced using an
outer lDebug.

The NEC detection may lock the machine up if its specially encoded ‘pop cx ’ is traced or run
with a breakpoint directly behind it. To allow to continue tracing after it, a breakpoint must be
set up at the ‘jcxz ’ instruction or later. There must not be a breakpoint on the ‘mov sp, ax ’
instruction. The ‘pop cx ’ instruction must not be traced with the Trace Flag set. Failure to
honour these requirements may lock up the NEC CPUs, for example the one used in the HP
95LX, which then may require resetting the system with Ctrl-Shift-On. This also resets the
system date and time.

The 486 detection may wrongly detect a 386 instead of a 486+ when traced on some systems,
such as some revisions of dosemu(2).

7.2 Sectioning overview
The sections of the debugger are declared in debug.asm:

 org 100h
 addsection lDEBUG_DATA_ENTRY, align=16 start=100h
data_entry_start:
%define DATASECTIONFIXUP -data_entry_start+100h
_CURRENT_SECTION %+ _start:
%xdefine %[_CURRENT_SECTION %+ FIXUP] - _CURRENT_SECTION %+ _start+100h

 addsection ASMTABLE1, align=16 follows=lDEBUG_DATA_ENTRY
 addsection ASMTABLE2, align=16 follows=ASMTABLE1
 addsection MESSAGESEGMENT, align=16 follows=ASMTABLE2 vstart=0
messagesegment_start:
 addsection lDEBUG_CODE, align=16 follows=MESSAGESEGMENT vstart=0
code_start:
%define CODESECTIONFIXUP -code_start+0
_CURRENT_SECTION %+ _start:
%xdefine %[_CURRENT_SECTION %+ FIXUP] - _CURRENT_SECTION %+ _start+0
 addsection lDEBUG_CODE2, align=16 follows=lDEBUG_CODE vstart=0
code2_start:
%define CODE2SECTIONFIXUP -code2_start+0
_CURRENT_SECTION %+ _start:
%xdefine %[_CURRENT_SECTION %+ FIXUP] - _CURRENT_SECTION %+ _start+0

 addsection DATASTACK, align=16 follows=ASMTABLE2 nobits
 addsection INIT, align=16 follows=lDEBUG_CODE2 vstart=0
%if _DEVICE
 addsection DEVICESHIM, align=16 follows=INIT vstart=0
%endif
 addsection RELOCATEDZERO, vstart=0 nobits
relocatedzero:

These are the sections:

lDEBUG_DATA_ENTRY

Data entry section. Used for data, most messages, and code entrypoints into the debugger.

69

Addressed with the same segment as the debugger's PSP. This segment is usually addressed
using SS, often DS also, and sometimes ES too. Not relocated, except if application /T
switch used.

ASMTABLE1, ASMTABLE2

Assembler/disassembler tables. Addressed with the same segment as the debugger's PSP
and the data entry section. Not relocated, except if application /T switch used.

MESSAGESEGMENT

Used to store some long messages, as well as the ELD link info tables. Addressed with a
vstart of zero using its own segment. Relocated to behind the data stack section when the init
sets up the debugger. May be truncated to drop?BOOThelp page when not in bootloaded
mode.

lDEBUG_CODE

First and main code section. Addressed with a vstart of zero using its own segment. This
segment is addressed using CS most of the time. Relocated to behind the message segment
or behind the auxiliary buffer. May be truncated to drop boot code when not in bootloaded
mode.

lDEBUG_CODE2

Second code section. Only used (not empty) if _DUALCODE is enabled. Addressed with
a vstart of zero. Relocated to behind the first code section.

DATASTACK

Nobits. Uninitialised data and stack section. Addressed using the same segment as the data
entry section. This contains the ELD data blocks, the size of which can be changed using
the /Y= switch to the application or device driver init. The maximum ELD data size will
expand this section up to offset 65_520.

INIT

Debugger init. Addressed using a vstart of zero. In device mode and application mode, this
section is relocated at least once. A second relocation will be attempted if _INIT_MAX=0
and the chosen sizes of the auxiliary buffer, the ELD code segment, the history buffer, and
the ELD data blocks are too large to fit into the initial allocation. Discarded after init is
done.

DEVICESHIM

This section is eventually installed at the beginning of the debugger allocation for the
device mode debugger, before the debugger's pseudo-MCB and PSP created by the init. It
contains the header and resident code of the device driver that the debugger installs to stay
resident.

RELOCATEDZERO

Nobits. A label in this section is used in far call (dualcall with _PM=0) instructions for
the segment immediate. Its use is to emit a relocation into the listing file, helping these
instructions to be matched by TracList.

70

There are some additional segments that do not correspond to sections in the debugger's sources.
All of these segments are allocated at init time.

Auxiliary buffer

Used for various needs. Default size is 8 KiB + 16 Bytes, can grow up to 24 KiB using
/A= switch to non-boot init.

History segment

Used to hold line editor history. Default size is 8 KiB, can grow up to nearly 64 KiB using
/H= switch to non-boot init. Can shrink to nearly 260 Bytes as well.

Environment block

Holds the debugger's environment. Size is 2 KiB.

ELD code segment

Provides space for loading ELD code instances. Default size is 16 KiB, can grow up to
65_520 Bytes or shrink all the way to zero bytes using the/X= switch to non-boot init.

Some additional memory allocations show up as gaps in the memory map of the debugger:

Device driver header and code

This is initialised from the DEVICESHIM section.

Device driver trailer paragraph

This is reserved to support the QC command, in case the debugger is stored in an SD sub-
MCB.

Layout 3 gap

When the debugger init determines that the auxiliary buffer cannot be placed as desired in
one of the first two layouts, then a gap of about 8 KiB is allocated additionally.

Boot image ident

This paragraph contains a signature that spells ‘NDEB’ and size information on the
allocation of the debugger.

Boot alignment gap

The boot allocation is done using the int 12h memory size. This size is specified in an
amount of kilo binary bytes. Therefore, the debugger may need to allocate up to 1008 Bytes
more than it needs to align its allocation to a KiB boundary.

7.3 Debugging ELDs
The ELD code segment has a different convenience entrypoint that returns the control flow to
thecmd3 loop. Due to the structure of ELD instances, there can be no code at offset 0. Instead,
there is an entry at offset 79h. Therefore, when the inner debugger is running code in the ELD
code segment, a ‘G=79’ command can be used to cancel the currently running ELD. (At most
points in an ELD, to cancel the currently running ELD should be safe. In particular, any calls to
debugger code that may do I/O or that may invoke the error handler must be safely cancellable.)

71

7.3.1 Using the offset hint to debug ELDs

ELDs can be loaded at arbitrary offsets in the ELD code segment. The first ELD is always loaded
at offset 80h, but subsequent ELDs may be loaded at higher offsets. The only certainty is that
the offset is paragraph-aligned.

To help in using TracList to debug an ELD, a special handshake is provided to communicate an
ELD's offset.

The outer debugger should ‘install amis ’ and install the AMIS message ELD by running
‘ext amismsg.eld install ’. When the ELD linker runs in the inner debugger, it will
send a hint message to the outer debugger's AMIS function 40h (refer to section 13.5.5). The
hint is received by the AMIS message ELD of the outer debugger and displayed to the outer
debugger's terminal before processing the next command in thecmd3 loop.

The hint line looks like this example:

TracList-add-offset=ldmem.lst::0080h

When the hint line is received by tractest, it will hand it over into the line file and hint file, both
read by TracList. TracList will then parse the offset provided by the hint. In the current use case
this hint is always used to add a file-scoped offset.

7.3.1.1 Using the hint ELDs

There are additional ELDs, hint.eld and hintoth.eld. Both will enumerate listing hints for all
currently loaded ELDs.

The first, hint.eld, will send a string containing all the hints to the AMIS message service of
another debugger instance.

The second, hintoth.eld, will display the hints of an other link debugger to the terminal of the
debugger instance that runs the hintoth.eld. This requires the other debugger instance to have
installed its AMIS interface and loaded the amisoth.eld to provide the other link.

7.3.2 Using houdinis to debug ELDs

Houdinis are conditional breakpoints. They run anint3 instruction only if three conditions are
met:

1. Houdinis are enabled in the ELD's build

2. The debugger is in debuggable mode (for lCDebug) or it is an unconditionally debuggable
build (lDDebug)

3. Houdinis have been enabled in the DCO7 using eg ‘install houdini ’

7.3.3 ELD examples

ldmem - Command hook

Depicts how to install and uninstall a resident ELD with a command hook.

ldmem - Nouns

Dispatches to subfunctions using a table of nouns that can be entered on the command line,

72

defaulting toALL if no nouns are specified.

ldmemoth - Other linker use

Uses the other link info to access data structures of a different instance of lDebug running
on the system. (Almost all of the sources are shared with ldmem.)

amismsg - AMIS handler

Implements two TSR-private AMIS services, functions 40h and 41h, by using the AMIS
handler hook.

amisoth - Export link info

Exports the link info and data/entry/stack segment and selector of the debugger on the
AMIS interface, to be read by ldmemoth.

aformat - Iterate a table of handlers

This ELD hooks into a record 4 handler chains exposed by the debugger. To handle all of
them, the install and uninstall code iterates over a table that points to the handlers and the
hooks in which they are referenced.

list - Find files with wildcard pattern

The list ELD finds and opens files specified by a pathname pattern. It can use DOS LFN
find, DOS SFN find, or a bespoke boot directory scan to match filenames.

list - Use eldstrict mode with annotated relocations

This mode utilises the recent NASM's reloc warnings to enforce relocations being marked
by the reloc or reloc2 mmacros.

rn - Do 386-related patches upon loading the ELD

The RN ELD implements patching based on whether it is running on a 386+ machine or
not. It re-uses the debugger's patch and table writing macros.

amount - Install an ELD variable

This installs ELDAMOUNT as a variable that can be read by the debugger's expression
evaluator.

eldcomp - Modify output in the puts handler

When detecting a difference, eldcomp will rerun the ELD under test and allocate buffers to
copy the ELD's allocation. Then it will run a debugger C command to highlight differences.
To relate the C command output to the ELD's listing file offsets, eldcomp hooks into the
puts handler and writes the in-section offset before and after the C command output.

eldcomp - Inject debugger commands

To run its test commands, eldcomp installs itself as a resident ELD and hooks into the
debugger's command injection handler. It then injects up to 17 commands to be run by the
debugger.

73

ifext - Add an IF command

When installed as a resident ELD, ifext will provide the
IF [NOT] EXT extensionname THEN command construct.

x - Add a help page to the ? command

The EMS commands ELD will add its help page using either of two commands:X? or ?X.

set - Redirect output in a puts handler

When run with the /E switch, the set ELD will inject a command with a puts handler
installed. This handler will save one line of output and cause none of the output to actually
be displayed.

withhdr - Provide prefix commands

The WITH HEADER and WITH TRAILER commands are prefixes that modify the
workings of a subsequent command.

variable - Preprocess command text

This ELD installs a preprocess handler to expand DOS environment variables in
commands.

dpb - Get an address that is always a 86 Mode segmented address

UsesgetaddrX to get an 86 Mode segmented address, even in Protected Mode. This
happens to work. The address is read if the DPB command is used with theLIST AT
keywords.

dosspace - Big number arithmetic

Uses 48-bit byte size display and 64-bit numerics to display total and free space on a DOS
drive.

errfix - Provide an interface variable

This ELD fills an indirect (pointer) variable in the debugger. Other ELDs can use the
contents of this variable as part of an interface, to access an array variable that lives within
the errfix.eld data block.

74

Section 8: Parameter Reference

8.1 Number
Plain numbers are evaluated as expressions. Refer to section 9. Expressions consist of any
number of the following:

• Unary operators

• Binary operators

• Operands

Plain number parsing for an expression continues for as long as a valid expression is continued.
For example, in the command ‘D 100 + 20 L 10 ’ the starting address (its offset to be
specific) is calculated as ‘100 + 20’. Then the expression evaluator encounters the ‘L’, which is
not a valid binary operator. Plain number expression parameters are used by a lot of commands.
Sometimes, the plain number parameter type is called ‘count’ or ‘value’.

8.2 Address
An address parameter is calculated with a default segment. First, a plain number is parsed. If
it is followed by a colon, the first number is taken as segment, and then another number is
parsed for the offset. If the first number is specified as a pointer type using the type keyword
‘POINTER’ then its upper 16 bits are taken as segment and its lower 16 bits are taken as the
offset. Otherwise, the first number is used as the offset. Offsets may be 16 bits or 32 bits wide,
though 32-bit offsets are only valid for DebugX and only in 32-bit segments.

If a segment or pointer type expression are prefixed by a dollar sign ‘$’ then the specified
segment is always taken as a Real/Virtual 86 Mode segment, even if DebugX is in Protected
Mode. Otherwise, in Protected Mode a segmented address refers to a selector.

Instead of an address, the address parameter may consist of the taken keywords:TAKENorT for
taken, andNOTTAKENorNTfor not taken. This is only valid if the currentcs:(e)ip points at
a conditional branch instruction, and will cause a parsing error otherwise. The taken keywords
will evaluate to a segmented address pointing at the target of the conditional branch. The not
taken keywords will evaluate to a segmented address pointing to behind the conditional branch
instruction.

Address parameters are used by a lot of commands.

8.3 Range
A range parameter may have a default length, or it may be disallowed to omit a length. Parsing
a range starts with parsing an address. Then, if the end of the line is not yet reached, an end for
the range may be specified. The end may be a plain number, which is taken as the offset of the

75

last byte to include in the range. The address of the last byte to include must be equal or above
the address of the first byte that is included in the range.

The end may instead be specified with an ‘L’ or ‘ LENGTH’ keyword. In that case, the keyword
is followed by a plain number and an optional item size keyword. A length of zero is not
valid. The item size keyword may be ‘BYTES’, ‘ WORDS’, ‘ DWORDS’, ‘ QWORDS’, ‘ PARAS’,
‘PARAGRAPHS’, ‘ PAGES’, ‘ KiB ’, ‘ MiB ’, or ‘GiB ’. Except for the first, the plain number will
be shifted as for the specified unit size (multiplying by 2, 4, 8, 16, 512, 1024, 1_048_576, or
1_073_741_824). It is an error if the shifting overflows the debugger's 32-bit arithmetic. The
‘BYTES’ keyword is only provided for symmetry; currently all commands taking ranges default
to byte size for the ‘LENGTH’ number.

For example, the command ‘DD 100 LENGTH 4 DWORDS’ will dump memory from address
0100h (in the current data segment) in dword units, for a length of 4*4 = 16 bytes. The item size
keywords were introduced primarily for the ‘DW’ and ‘DD’ commands (refer to section 10.12),
but they can be used for any command that accepts a range.

There is a new keyword called ‘END’. This keyword may appear where the ‘L’ or ‘ LENGTH’
keyword would be expected. After the ‘END’ keyword the end offset is parsed. This is the same
behaviour as if no keyword was present but crucially it allows an end offset starting with the
text ‘L’, which would otherwise be misparsed as an ‘L’ keyword.

If the default length is used (the line ends after the start address) then a start address near the end
of a segment (1_0000h or 1_0000_0000h) will shorten the length if it would otherwise overflow
the segment.

Range parameters are used by a lot of commands.

8.4 Range with LINES keyword allowed
This type of parameter is an extension of the range parameter type. Both the default length and
the explicit length may be specified as a number of lines instead of an address length.

An explicit ‘LINES ’ length is specified by prepending an ‘L’ or ‘ LENGTH’ keyword (like an
address length) but then specifying a unit as ‘LINES ’ instead. The number of lines specified
must be nonzero and below 8000h.

The exact details of how a lines length is used depend on the command in question. A range with
lines length is allowed for the U command (section 10.52) and the D/DB/DW/DD commands
(section 10.12).

8.5 List
A list is made up of a sequence of items. Each item is either a plain number or a quoted string.
List parsing continues until the end of the line. Each plain number represents a single byte.
Quoted strings represent as many bytes as there are quoted. A quoted string can be delimited by
single quotes' or double quotes" . If the used delimiter quote mark occurs twice back to back
while reading the quoted string, this is taken as an escape to include the delimiter mark itself
as a byte of the string. List parameters are used by the E, F, and S commands. Refer to section
10.18, section 10.20, and section 10.47.

A list may have its type changed with anAS keyword, followed by a size keywordBYTES,
WORDS, or DWORDS. When a larger size is selected, each subsequent number expression and

76

each byte of quoted text are written to a full word or a full dword instead of to a byte. Text bytes
are zero-extended. Numbers can calculate to any value fitting the specified size. A list's type
may be changed multiple times within the list.

8.6 List or range
A list or range can be specified for this parameter. The range is identified by a leading ‘RANGE’
keyword. Otherwise, a list is parsed. A list or range parameter is as yet used by the S command
and the F command, refer to section 10.47 and section 10.20.

8.7 Keyword
A keyword is checked insensitive to capitalisation. Keywords depend on each command. Only
the keywords used to specify a range's length are shared by all commands that parse ranges.

8.8 Index
An index is a plain number that specifies a breakpoint index. It allows operating on one specific
breakpoint. The index parameter type is used by the B commands, refer to section 10.7.

8.9 Segment
A segment is a plain number for parsing purposes. The segment parameter type is used by the
DM command and some BOOT commands, refer to section 10.14 and section 18.11.

8.10 Breakpoint
Each breakpoint is a single address, which defaults to the code segment. The address may instead
be specified starting with an AT sign ‘@’, followed by a blank or an opening parenthesis. In
that case, the following plain number specifies the non-segmented linear address to use. The
breakpoint parameter type is used by the B and G commands, refer to section 10.7 and section
10.21.

8.11 Label
A label is a (not quoted) string keyword. A label can be used by the GOTO and Y commands,
refer to section 10.22 and section 10.58. For the Y commands a label must start with a colon.
For the GOTO command the colon may be specified but it is optional.

8.12 Port
A port is a plain number for parsing purposes. The port parameter type is used by the I and O
commands, refer to section 10.24 and section 10.32.

8.13 Drive
A drive may be either an alphabetic letter followed by a colon, or a plain number. The number
zero corresponds to drive A: then. The drive parameter type is used by the L and W sector
commands, refer to section 10.28 and section 10.56. The EXT, N, and Y commands (section
10.19, section 10.31, and section 10.58) also accept drive parameters, but only as part of their
filenames. These must be in the drive letter followed by colon format.

77

8.14 Sector
A sector is a plain number, which can be equal to any 32-bit value. The sector parameter type is
used by the L and W sector commands, refer to section 10.28 and section 10.56. Some BOOT
commands also use sector numbers, refer to section 18.11.

8.15 Condition
A condition is a plain number. It is evaluated either to nonzero (true) or zero (false). The
condition parameter type is used by the IF command, as well as the P, TP, and T commands
when specified with a ‘WHILE’ keyword. The BW and BP (with a ‘WHEN’ keyword) commands
also use conditions. Refer to section 10.25, section 10.33, section 10.49, section 10.7.3, section
10.7.1. The length of a condition for B commands is limited by how much space is left in the
permanent breakpoint conditions buffer. This buffer currently defaults to 1024 bytes. It is shared
for all conditions of all permanent breakpoints.

8.16 Register
A register specifies an internal variable of the debugger. Most prominently these include the
debuggee's registers as stored by the debugger in its data segment. A register or variable may
be an operand in a plain number's expression. However, several forms of the R command also
use register parameters. These allow reading and writing the register values. Refer to section
10.37.

8.17 Command
Command is a special parameter type that is used only by the RE.APPEND, RE.REPLACE,
RC.APPEND, and RC.REPLACE commands (section 10.37.2 and section 10.37.4). It is read
verbatim and entered into the RE or RC command buffer. Semicolons within a command
parameter are not parsed as end of line comment markers. Instead, they are converted to CR (13)
codes in the buffer. This delimits the parts of the parameter into several commands. A semicolon
may be prefixed by a backslash to escape it and thus enter a literal semicolon into the buffer.

8.18 ID
ID is a special parameter type that is used only by the BP and BI commands (section 10.7.1 and
section 10.7.2). Leading and trailing whitespace is ignored. An ID can be empty, or contain up to
63 bytes of data. The length of an ID is also limited by how much space is left in the permanent
breakpoint ID buffer. This buffer currently defaults to 384 bytes. It is shared for all IDs of all
permanent breakpoints.

8.19 Filename or pathname
This parameter type is used by EXT, N, K, and Y commands, as well as some BOOT commands.
EXT and Y commands allow to use double quote marks. When using DOS, EXT and Y
commands can access files using Long File Names (LFNs). When using DOS, all available
commands parsing filenames may specify drive letters. EXT and Y commands when bootloaded,
and some BOOT commands, may specify partitions at the beginning of filenames.

8.20 Command line tail
Command line tails are parsed by EXT, N, and K commands. They always are located behind a

78

filename parameter. A command line tail may be empty. The N and K commands will store the
command line tail for use by the L program-loading command. The EXT command passes its
command line tail to the Extension for lDebug that it loads. The ELD may parse its command
line tail in whatever way is desired, which may involve parsing other parameter types.

79

Section 9: Expression Reference

9.1 Literals
Literals consist of one or more digits. A literal must start with a digit or hash sign ‘#’.
Embedded underscores ‘_’ are skipped. Literals must not overflow 4 giga binary minus 1, that
is FFFF_FFFFh.

The default base for literals is sixteen (hexadecimal). A hash sign ‘#’ indicates a base change.
If nothing preceeds the hash sign the base is changed to ten (decimal). Otherwise, the number
before the hash sign is read in the prior base and taken as the base to change to. The base must
be between 2 and 36, inclusive. Multiple hash signs are allowed in the same literal.

9.2 String literals
String literals consist of up to 4 bytes. The bytes are specified starting with a hash sign ‘#’
followed by a single-quote mark' or double-quote mark" . The same quote mark is used to end
the string literal. If the delimiter quote mark occurs twice back to back while reading the string
literal, that is handled as an escape to include the delimiter mark itself as a byte. Strings are read
in a little-endian order, same as NASM does. That is, the first byte of a multi-byte string is read
into the lowest byte of the numeric value. This matches the order obtained by writing the string
to memory and reading it as a word, 3byte, or dword.

9.3 Variables
A variable consists of a variable name, possibly followed by parentheses with an index
expression. Variable names are capitalisation insensitive. Variables differ in size, there are
variables consisting of 8, 16, 24, or 32 bits. Variables can be written to using the R command.
Some variables are read-only. A few variables allow writing some but not all bits.

9.4 Indirection
Indirection is indicated by square brackets. Within the brackets an address is parsed, defaulting
tods as the segment. The size of the indirect access can be specified with a type specifier before
the brackets. The usual types areBYTE, WORD, 3BYTE, andDWORD. Like variables, indirection
terms can be written to using the R command.

9.5 Parentheses
Parentheses can be used to force a different order of operations.

9.6 LINEAR keyword
A keyword readingLINEAR introduces an address to parse. The address defaults tods as the
segment. The address may be separated from subsequent text with a comma. If the expression

80

is to be separated from a subsequent element using a comma after aLINEAR address then two
commas are needed. Depending on the segmentation scheme of the current mode the segmented
address is converted into a linear address. If DebugX is in Protected Mode and the segment base
cannot be determined the expression is rejected as an error.

9.7 DESCTYPEkeyword
This keyword introduces a descriptor type read. The following expression is taken to be a selector
specification. This keyword is only valid for (DPMI-enabled) lDebugX builds, and only while
in Protected Mode.

The value is read from a ‘lar ’ instruction on the following expression, and shifted to the right
by 8. If the instruction indicates that the selector does not refer to a valid descriptor then the
result of this keyword is zero.

9.8 VALUE IN construct
A keyword reading VALUE starts a VALUE IN construct. Between
the VALUE and subsequent IN keyword there is a single value
expression, or a range of the formFROM expression TO expression or
FROM expression LENGTH expression . Next follows the IN keyword. After
this, there is a list of match ranges. A match range is either a single
value expression, or a range of the formFROM expression TO expression or
FROM expression LENGTH expression . After each match range a comma indicates
another match range follows.

In a FROM TOspecification the first expression has to evaluate to unsigned below-or-equal
the second expression. In aFROM LENGTHspecification the length must be nonzero. If these
conditions are not met then the value or match range in question is always considered as not
matching.

The entireVALUE IN construct evaluates to how many of the match ranges match the value
range. The construct only evaluates to zero if no matches occurred. A nonzero value indicates
that at least one match occurred.

9.8.1 VALUE IN construct keywords

Instead of a value or match range as specified here, the keywordEXECUTINGmay be specified.
This expands to the following input:

FROM LINEAR cs:cip LENGTH abo - cip

If the _MEMREF_AMOUNTbuild option is enabled and paired with thedirection and
stackhinting switches to mktables then additional keywords are available forVALUE IN
match ranges. That is, these keywords must be specified behind theIN and cannot be specified
between theVALUEandIN .

These keywords are as follows:

READING

Expands to a comma-separated list ofFROM readadr0 LENGTH readlen0
constructs, for every read access variable pair (refer to section 12.19).

81

WRITING

Expands to a comma-separated list ofFROM writadr0 LENGTH writlen0
constructs, for every write access variable pair (refer to section 12.19).

ACCESSING

Expands toREADING, WRITING, EXECUTING.

9.9 Conditional ?? :: construct
The ternary conditional operator takes three operands. It is the only ternary operator.

The first operand, the condition, is specified before the?? keyword. Note that the?? keyword
must be terminated by a blank or an opening square bracket or round parenthesis.

The second operand is specified between the?? keyword and the:: keyword. Its value is used
as the construct's return value if the condition is true.

The third operand is specified after the:: keyword. Its value is used as the construct's return
value if the condition is false.

The conditional operator can be nested freely. The conditional operator must not be combined
into the R command's assignment operator as in??:= . The third operand may be separated from
subsequent text with a comma. If the expression is to be separated from a subsequent element
using a comma after a conditional's third operand then two commas are needed.

Any side effects that may happen from parsing and reading the second operand or the third
operand will always happen, even if the operand in question is not selected as the result by the
construct.

9.10 Expression side effects
Some uses of the expression evaluator may have side effects. These side effects may happen
even if the parsing of an expression or a command ultimately fails. As a special case, side effects
may occur up to twice if a machine mode command (section 10.30) is parsed.

The ternary?? :: operator and theVALUE IN construct will both always evaluate every
operand that they're given, even if that operand is not selected as the result or does not contribute
to the match count.

Possible side effects include:

• LFSR and RLFSR variables will be stepped once each time they're read.

• Indirection can read access arbitrary memory in the current mode, making it possible to
affect memory-mapped I/O if such memory is visible to the debugger. Other variables may
also read memory, but not as arbitrary as indirection.

• If an address parsed within an address parameter or in indirection or in aLINEAR construct
includes a dollar sign prefixed segment or pointer type expression, then lDebugX may
request a selector from the DPMI host.

• If the symbolic build option is enabled, symbol table access in XMS or 86 Mode memory
may occur.

82

Section 10: Command Reference

10.1 Empty command - Autorepeat
Entering an empty command at an interactive prompt results in autorepeat. Empty means no
content except for blanks. A line starting with a semicolon comment is not considered empty.
Interactive prompts for this purpose include:

• the debugger as a DOS application (int 21h)

• the debugger in InDOS mode or as a bootloaded program (int 16h /int 10h)

• the debugger across a serial port (port I/O)

Input that does not count as an interactive prompt includes:

• reading from a file redirected as stdin using DOS (int 21h)

• reading from a Y script file using DOS (int 21h)

• reading from a Y script file while bootloaded (int 13h)

• reading from the command line buffer

• reading from the RE buffer

Autorepeat is not supported by all commands. The following commands support autorepeat:

D/DB/DW/DD

Continues memory dump behind the last prior dumped position. Continues with the same
element size as the prior dump. As for if the command is executed with an address lacking
a length, the default length is used. (It defaults to 128 bytes, refer to section 12.5.)

DZ/D$/D#/DW#

Continues string dump behind the last prior dumped string. Continues with the same type
of string as the prior dump.

DX

Continues memory dump.

G

Repeats a step running the debuggee. An equals address given to the prior Go command is
not used again. The same G breakpoints as used by the prior Go command are used (same
as G AGAIN). The exception is that wherever a breakpoint matches theCS:(E)IP at the
start of the command's execution, it is skipped once.

83

P

Repeats a step running the debuggee. An equals address given to the prior Proceed
command is not used again. A count given to the prior Proceed command is not used again,
autorepeat always runs as if not given a count. (That means the PPC variable is used as the
effective count. Refer to section 12.4.)

T

Repeats a step running the debuggee. An equals address given to the prior Trace command
is not used again. A count given to the prior Trace command is not used again, autorepeat
always runs as if not given a count. (That means the TTC variable is used as the effective
count. Refer to section 12.4.)

TP

Repeats a step running the debuggee. An equals address given to the prior Trace/Proceed
command is not used again. A count given to the prior Trace/Proceed command is not used
again, autorepeat always runs as if not given a count. (That means the TPC variable is used
as the effective count. Refer to section 12.4.)

U

Repeats disassembly behind the last prior disassembled instruction. As for if the command
is executed with an address lacking a length, the default length is used. (It defaults to 32
bytes, refer to section 12.5.)

10.2 ? command

Online help ?

The question mark command (?) lists the main online help screen.

There are additional help topics that can be listed by using the question mark command with an
additional letter or keyword. These keywords are as follows:

Registers ?R
Flags ?F
Conditionals ?C
Expressions ?E
Variables ?V
R Extended ?RE
Run keywords ?RUN
Options pages ?OPTIONS
Options ?O
Boot loading ?BOOT
lDebug build ?BUILD
lDebug build ?B
lDebug sources ?SOURCE
lDebug license ?L

The full help pages are listed in section 18.

84

10.3 : prefix - GOTO label
A leading colon indicates a destination label for GOTO, see section 10.22.

10.4 . (dot) command - Immediate assembler
A dot command can be used to invoke the immediate assembler. This is only available if the
_IMMASM build option was enabled. Following the dot, an instruction is parsed which is
assembled. If successful, then the assembled instruction is immediately run.

Branches and instructions involving CS as a prefix or operand are handled specifically to
do something equivalent to the assembled instruction, by a combination of special detection
and modification or as-if handling. This includes jmp far/near/short, jcc, loop, call far/near,
retf/retn/iret, mov to ds, mov from ds or cs, push cs, push ds, pop ds, lds, and all memory
operands with cs prefix. (The instructions involving ds are handled specifically because a cs
prefix is replaced by a ds prefix and ds is temporarily replaced by the cs value then.)

Interrupt calls are always proceeded past, even if TM is set. The int instruction is run from a
buffer internal to the debugger. Interrrupts which depend on the CS or (E)IP they're called from
may not work as expected. Calls are usually traced, but can be proceeded past by including a
comma after the dot command.

Warning: It is generally not safe to modify SS or SP to relocate the stack with the immediate
assembler. This will fail because the immediate assembler traces most of the instructions
assembled with it, which uses the stack both before and after running the instruction. LSS SP or
LSS ESP are okay if the stack is valid immediately after the instruction is traced. To relocate the
stack otherwise you may use the R command to modify the SS and (E)SP debugger variables.
This does not trace anything in between modifying the two variables.

10.5 A command - Assemble
assemble A [address]

Starts assembly at the indicated address (which defaults to CS segment), or if no address is
specified, at the "a_addr" (AAS:AAO variables).

Assembly mode has its own prompt. Entering a single dot (.) or an empty line terminates
assembly mode. Comments can be given with a prefixed semicolon. In assembly mode,
whereever an immediate number occurs an expression can be given surrounded by parentheses
(and) . In such expressions, register names like AX are evaluated to the values held by the
registers at assembly time. To refer to a register as an assembly operand, it must occur outside
parentheses.

10.6 ATTACH command - Attach to process (Leave TSR mode)
attach process ATTACH psp

While in resident mode, the ATTACH command can be used to attach the debugger to a process.
This is the opposite operation to the TSR command (see section 10.51). The device driver mode
starts out as detached while the application mode starts out as attached.

The provided parameter must be a segment value, even if lDebugX is in Protected Mode. It
refers to the PSP to attach to. This PSP must not be self-owned.

85

To attach to a process, the debugger stores away the current PRA and parent of the process, and
modifies both to point to the debugger instead.

When attached to a process, commands like QA and the process-loading L command can be
used sensibly. The Q command will also try to terminate the attached process.

When detached, the Q command will continue to run the current debuggee context after the
debugger has been uninstalled.

The usual parameter to the attach command consists of the ‘PSP’ variable, which will have the
command try to attach to the current debuggee process. Other choices likeATTACH PARENT
are also valid.

10.7 B commands - Permanent breakpoints
There are a fixed number of permanent breakpoints provided by the debugger. The default is
to provide 16 permanent breakpoints. They are specified by indices ranging from 00 to 0F. A
breakpoint can be unused, used while enabled, or used while disabled. A breakpoint that is in
use has a specific linear address. It is allowed, though not advised, for several breakpoints to be
set to the same address.

When running the debuggee with the commands G, T, TP, or P, hitting a permanent breakpoint
stops execution, and indicates in a message "Hit permanent breakpoint XX" where XX is
replaced by the hexadecimal byte index of the breakpoint. If the breakpoint counter is not equal
to 8000h when the breakpoint is hit, then the "Hit" message is followed by a "counter=YYYY"
indicator. If the breakpoint ID is not empty, then the ID is shown with an "ID: " prefix. The
ID is shown either on the same line as the "Hit" message, or on the next line if the ID exceeds
28 bytes. After that message a register dump occurs, same as for default breaking for the Run
commands.

The exceptions are as follows:

• If the CS:(E)IP at the first step of a G command matches any breakpoints, then G does
a TP-like step with all breakpoints other than the "cseip"-breakpoint written, while the
"cseip"-breakpoint is not written. After that, the "cseip"-breakpoint is written and execution
resumes as normal for G.

• If T.NB or TP.NB or P.NB is used, no permanent breakpoints are written at all.

• If T.SB or TP.SB or P.SB is used, then during the first step no permanent breakpoints
are written. If a counter higher than 1 is given, then during subsequent steps permanent
breakpoints are written.

Each breakpoint has a breakpoint counter, which defaults to 8000h if not set explicitly by the
BP or BN commands. The breakpoint counter behaves as follows:

• If (counter & 3FFFh) equals zero then the counter is considered to be at a terminal state.

• If the point breaks while the counter is not at a terminal state, then the counter is
decremented.

• If the counter is decremented to 0 or 4000h, then the point is hit.

• If the counter is decremented to 8000h or C000h, or was already at either count without

86

being decremented, then the point is hit.

• If the point is not hit but the bit (counter & 4000h) is set, then the point is passed.

Example counter values:

8000h (default)

Always break

4000h

Always pass

8003h

Break on third time the breakpoint is reached, then break always

0003h

Break on third time the breakpoint is reached, but do not break again

C006h

Pass for five times, then on the sixth time the breakpoint is reached break on it, then break
always

The point being passed means that during running the debuggee with a Run command, execution
is not stopped, but a message indicating "Passed permanent breakpoint XX, counter=YYYY" is
displayed. As for the "Hit" message the ID, if any, is also shown. After that message, a register
dump occurs. Then execution is continued in accordance with the command that is running
debuggee code.

Each breakpoint can have a breakpoint condition. If the condition expression evaluates to false
when the point breaks, then the point is not considered hit or passed. The breakpoint counter is
not stepped then either.

10.7.1 BP command - Set breakpoint

set breakpoint BP index|AT|NEW address
 [[NUMBER=]number] [WHEN=cond] [ID=id]

BP initialises the breakpoint with the given index. It must be a yet unused breakpoint. If the
index is specified as the keyword NEW, the lowest unused breakpoint (if any) is selected. If
there is the keyword AT instead of an index or a keyword NEW, then an existing breakpoint at
the same linear address, if any, is reset (unlike the NEW keyword), or a new one is added (same
as if given the NEW keyword).

The address can be given in a segmented format, which defaults to CS, and which in DebugX is
subject to either PM or 86M segmentation semantics depending on which mode the debugger
is in. The address can also be given with an @ specifier (followed by an opening parenthesis
or whitespace) in which case it is specified as the 32-bit linear address. Debug without DPMI
support limits breakpoints to 24-bit addresses, of which 21 bits are usable.

The optional number, which defaults to 8000h, sets the breakpoint counter to that number.

87

The optional WHEN keyword introduces a breakpoint condition. If the breakpoint is reached
then the condition, if specified, is checked before stepping the counters. If the condition is false
at that point the point is not considered hit or passed and its counter is not stepped.

There is an optional OFFSET keyword (not shown in the example) which allows overriding the
breakpoint's preferred offset. Refer to section 10.7.4 for details.

The optional ID keyword allows setting the breakpoint ID. The ID is displayed by BL and when
a breakpoint is hit or passed. The default ID is an empty ID. Note that the ID extends for the
remainder of the line. There cannot be a breakpoint counter number nor WHEN condition nor
OFFSET after the ID keyword.

10.7.2 BI command - Set breakpoint ID

 set ID BI index|AT address [ID=]id

BI sets the breakpoint ID of the specified breakpoint. The ID is displayed by BL and when a
breakpoint is hit or passed. The ID may be specified as empty.

10.7.3 BW command - Set breakpoint condition

 set condition BW index|AT address [WHEN=]cond

The BW command sets the breakpoint condition. If the WHEN keyword and the condition are
absent then the condition is reset. That means the point is no longer conditional.

10.7.4 BO command - Set breakpoint preferred offset

 set offset BO index|AT address [OFFSET=]number

The BO command sets the breakpoint preferred offset. The preferred offset is used only by the
BL command. It is used to determine the segmented address to display. The offset is a word
variable for Debug and a dword variable for DebugX. If the OFFSET keyword and the number
are absent then the offset is disabled, as if the breakpoint was specified with a linear address.
(Internally this is done by setting the offset to all 1 bits. The offset can be explicitly set to FFFFh
(Debug) or FFFF_FFFFh (DebugX) for the same effect.)

10.7.5 BN command - Set breakpoint number

 set number BN index|AT address|ALL number

BN sets the breakpoint counter of the specified breakpoint with the given index, or all used
breakpoints when given the keyword ALL, or the first breakpoint with a matching linear address
when given the AT keyword. The number defaults to 8000h.

10.7.6 BC command - Clear breakpoint

 clear BC index|AT address|ALL

BC clears the specified breakpoint with the given index, or all breakpoints when given the
keyword ALL, or the first breakpoint with a matching linear address when given the AT keyword.
This returns the specified breakpoint (or all of them) to the unused state. Any associated ID or
condition is deleted by BC too.

88

10.7.7 BD command - Disable breakpoint

 disable BD index|AT address|ALL

Given an index or the keyword ALL or the keyword AT (like BC), BD disables breakpoints that
are in use. A disabled breakpoint's address is retained and BP will not allow initialising it anew
(except with AT), but it is otherwise skipped in breakpoint handling.

10.7.8 BE command - Enable breakpoint

 enable BE index|AT address|ALL

Like BD, but enables breakpoints.

10.7.9 BT command - Toggle breakpoint

 toggle BT index|AT address|ALL

Like BE and BD, but toggles breakpoints: A disabled breakpoint is enabled, while an enabled
breakpoint is disabled.

10.7.10 BS command - Swap breakpoint

 swap BS index1 index2

This command is provided to allow re-ordering existing breakpoints. It takes two indices both
of which must refer to valid breakpoints. However, it is allowed to specify the index of an
unused breakpoint for either of the parameters (or even both). All data associated with the two
breakpoints is swapped.

10.7.11 BL command - List breakpoints

 list BL [index|AT address|ALL]

BL lists a specific breakpoint given by its index, or all used breakpoints if given the keyword
ALL or given neither an index nor the keyword. When given the AT keyword, all breakpoints
with a matching linear address are listed. (This differs from all other B commands, which only
select the first matching breakpoint when the AT keyword is given.)

When listing all breakpoints only used breakpoints are displayed.

The output format for unused breakpoints is as follows:

• "BP"

• The byte index given as two hexadecimal digits

• "Unused"

The output format for used breakpoints is as follows:

• "BP"

• The byte index given as two hexadecimal digits

• A plus sign if the breakpoint is enabled, a minus sign if it is disabled.

89

• "Lin=" followed by the linear address of this breakpoint.

• The segmented address of this breakpoint. Only displayed if the breakpoint was initially
specified with a segmented address, or it had a preferred offset specified with the BP
OFFSET= keyword or to the BO command.

• The breakpoint content byte given in parentheses (generally "CC").

• "Counter=" followed by the breakpoint counter.

• "ID: " followed by the breakpoint ID, if any. Depending on the length the ID is shown on
the first line or on a second line.

• "WHEN " followed by the breakpoint condition, if any. This is always written to a line on
its own.

Example output of BL:

-bp at 100 id = start
-bp at 103 counter = 4000
-bp at 105 when al == 7
-bl
BP 00 + Lin=01_BB70 1BA7:0100 (CC) Counter=8000, ID: start
BP 01 + Lin=01_BB73 1BA7:0103 (CC) Counter=4000
BP 02 + Lin=01_BB75 1BA7:0105 (CC) Counter=8000
 WHEN al == 7
-

10.8 BU command - Break Upwards
break upwards BU

This command, which is only supported by Debuggable builds (DDebug) or Conditionally
Debuggable builds (CDebug), causes the debugger to execute an int3 instruction in its own code
segment (lDEBUG_CODE). This breaks to the next debugger that was installed prior to DDebug
or CDebug. Prior to the breakpoint, the message "Breaking to next instance." is displayed. The
breakpoint is in thecmd4 dispatcher. When the next instance is another lDebug then running
the command ‘G ip ’ in it can be used to run the debuggable debugger until the next command
is dispatched. (This does not work if an Extension for lDebug command handler processes a
command instead of passing it on to the debugger.)

In non-debuggable lDebug builds, the following error message is displayed instead:

-bu
Already in topmost instance. (This is no debugging build of lDebug.)
-

In conditionally debuggable builds, the following message is displayed instead if CDebug is
currently not in debuggable mode:

-bu
Debuggable mode is disabled.
Enable with this command: r DCO6 or= 0100
-

90

10.9 BOOT commands - Boot loading support
The BOOT commands are only available if the debugger is running in boot loaded mode.

10.9.1 BOOT PROTOCOL= command

BOOT PROTOCOL=proto [parameters] [partition] [pathnames [cmdline]]

This command is used to load a boot sector or kernel using the loaders implemented by the
debugger. These loaders attempt to be highly compatible to the original loaders whose load
protocols they simulate.

10.9.1.1 Specify protocol

Using the keywordPROTOCOL, the load protocol to use as a base can be specified. This keyword
is required, unless the special protocol namedSECTORis to be used.

10.9.1.2 Altering protocol parameters

When specifying a protocol other than the specialSECTORprotocol, the protocol parameters
can be altered. Each protocol will set up defaults for all of those parameters. Each protocol can
be completely described by a combination of parameters and default filenames. Every parameter
is indicated by a keyword followed by a numeric expression, or in some cases followed by a
segmented address.

The following parameters are available:

MINPARA

Specify minimum amount of paragraphs to load from the first file. It is an error if a file is
shorter than that.

MAXPARA

Specify maximum amount of paragraphs to load from the first file. It is valid for the file to
be shorter or longer than this. If nonzero then it is an error if the file is so long that there
is not enough memory to hold this amount of paragraphs. If zero, then as much of the file
is loaded as fits.

SEGMENT

Specify load address of the data from the first file. The number specified is taken to be the
segment of an address within memory.

ENTRY

Specify entrypoint to set up in the CS:IP registers. If a single numeric expression, it is taken
as the offset (for IP) and the segment value is assumed as zero. That is, CS will be set up
to equal the SEGMENT parameter in use. If a segmented address, the offset is used for IP
and the segment is used as a relative adjustment to the SEGMENT that is in use to obtain
the value for CS. It is valid for the segment value to be positive or negative.

BPB

Specify where to load the boot sector with (E)BPB. If a single numeric expression, it is

91

taken as the offset in segment zero. If the segment is specified as 0FFFFh or -1, then the
"auto-BPB" feature is used and the boot sector and stack is located at a high address that
is not otherwise used. The offset is still set to the offset part in this case.

CHECKOFFSET

Specify offset of word value to check. Must not possibly cross a sector boundary. (This is
checked by testing that the offset modulo 32 is not equal to 31.) May not be higher than
0FFFEh.

CHECKVALUE

Specify value of word to check. If zero, no check occurs. It is an error if this value is nonzero
and the check does not match.

The following boolean parameters are available. Like the other parameters they read a numeric
expression, but this is only checked to be true (non-zero) or false (zero).

SET_DL_UNIT

If true, set up the DL register with the load unit. This is used by several protocols.

SET_BL_UNIT

If true, set up the BL register with the load unit. This is used by the FreeDOS and EDR-
DOS protocols.

SET_SIDI_CLUSTER

If true, initialise the DI (FAT12/FAT16) or SI:DI (FAT32) registers to hold the number of
the first cluster of the first file. This is used by the MS-DOS v7 protocol.

SET_DSSI_DPT

If true, initialise DS:SI registers to point to the DPT. (Set equal to the interrupt 1Eh vector.)
This may be used by the MS-DOS v6 and IBMDOS protocols.

PUSH_DPT

If true, initialise stack to hold a segmented (16:16) pointer to the interrupt 1Eh vector
(always 0:78h) and then the DPT address (equal to the interrupt 1Eh vector). This may be
used by the MS-DOS v6 and IBMDOS protocols, and is used by the MS-DOS v7 protocol.

DATASTART_HIDDEN

If true, modify the data start variable atdword [ss:bp - 4] to include the number of
hidden sectors. (The hidden sectors are the partition's start offset in its unit.) This is used
by the MS-DOS (v6/v7) and IBMDOS protocols.

SET_AXBX_DATASTART

If true, set the AX:BX register pair to the data start variable. If DATASTART_HIDDEN
is also set, the registers will receive the value of the data start variable that includes the
hidden sectors. This is used by the MS-DOS v6 and IBMDOS protocols.

92

SET_DSBP_BPB

If true, set up the DS register to equal SS. This makes DS:BP point to the boot sector with
the (E)BPB. This is used by the EDR-DOS protocol.

LBA_SET_TYPE

If true, change the third byte of the boot sector to indicate the use of LBA access functions in
the manner expected by the MS-DOS v7 load protocol. That means a 90h (nop instruction)
is written if to use CHS access, a 0Eh is written if the FAT type is not FAT32 and to use
LBA access, and a 0Ch is written if the FAT type is FAT32 and to use LBA access.

MESSAGE_TABLE

If true, include the message table used by the MS-DOS v7 load protocol.

SET_AXBX_ROOT_HIDDEN

If true, pass the sector number of the root directory start including hidden sectors in the
AX:BX register pair. This is used by the RxDOS.0 and RxDOS.1 protocols.

NO_BPB

If true, do not load the boot sector with BPB. This is used by the CHAIN protocol.

SET_DSSI_PARTINFO

If true, load sector with partition table to address 00600h and point DS:SI and DS:BP to the
active partition table entry within the partition table. This is used by the CHAIN protocol.

CMDLINE

If true, allow a command line to be specified after the filenames. This is used by the
RxDOS.2, RxDOS.3, and lDOS protocols. As an extension it may be enabled for the EDR-
DOS or FreeDOS protocols, too.

10.9.1.3 Specifying protocol partition

After the parameters, the debugger will try to parse a partition specification. Partition
specifications are capitalisation-insensitive. A partition may be specified in the following ways:

FDA

Diskette-style (unpartitioned) file system on unit 00h

FDB

Diskette-style (unpartitioned) file system on unit 01h

HDA1

MBR-style (partitioned) file system on unit 80h, first primary partition

HDA2

MBR-style (partitioned) file system on unit 80h, second primary partition

93

HDA5

MBR-style (partitioned) file system on unit 80h, first logical partition

HDA6

MBR-style (partitioned) file system on unit 80h, second logical partition

HDA(partnumber)

MBR-style (partitioned) file system on unit 80h, with partition specified by partnumber.

HDB1

MBR-style (partitioned) file system on unit 81h, first primary partition

LDP

File system that the debugger loaded from

YDP

File system that the most recent Y command loaded from

SDP

Last used file system

U00.

Diskette-style (unpartitioned) file system on unit 00h

U80.1

MBR-style (partitioned) file system on unit 80h, first primary partition

U(unitnumber).(partnumber)

Unit specified by unitnumber with partition specified by partnumber. The specified
partnumber may be specified as an expression in parentheses or as a literal number without
parentheses. If it is an expression equal to zero in parentheses then that means unpartitioned.

LD(partnumber)

Unit that the debugger loaded from, with partition specified by partnumber.

YD(partnumber)

Unit that the most recent Y command loaded from, with partition specified by partnumber.

SD(partnumber)

Last used unit, with partition specified by partnumber.

If no partition can be parsed, SDP is assumed. Note that partition numbers are parsed as decimal
numbers, except if the partition number is specified as an expression with parentheses, in which
case the default expression base is used (hexadecimal).

94

10.9.1.4 Specifying protocol filenames

One or two pathnames may be specified to load, after the parameters or the partition
specification. Both will have a default specified by the protocol. The default for the second name
may be empty. If the second name is empty, no additional file is searched for. If two names are
specified, they must be separated by one or more blanks.

Each pathname may include subdirectory names, indicated by trailing slashes. If a pathname
ends in a slash, the default filename is searched in the directory indicated by the pathname. The
second pathname may be specified as two slashes to indicate no second file. If the second name
defaults to empty, a lone dot may be used to indicate no second file. If the second name defaults
to not empty, a lone dot may be used to indicate searching the default name in the same directory
as the first file. If either pathname is specified as only one slash, then the corresponding default
name is searched for in the root directory.

If the second name is not specified at all, or is specified as a lone dot, the default additional
filename is searched for in the same directory as the first file. If the second name is specified but
does not start with a slash, then it is assumed to be a pathname relative to the directory of the
first file. Otherwise, if the second name is specified and starts with a slash, the second name is
searched in the directory of the specified pathname which is interpreted as being relative to the
root directory.

The 32-byte directory entry of the first file is loaded to 00500h. The 32-byte directory entry of
the second file is loaded to 00520h. These entries are used by the MS-DOS v6 and IBMDOS
protocols. If no second file is searched for, the 32 bytes at 00520h are filled with zeroes.

The blank-padded FCB filenames of the two files are stored within the pseudo boot sector with
(E)BPB that the loader sets up for the kernel. This supports kernels scanning the boot sector for
informational filenames.

10.9.1.5 Specifying protocol command line

If the CMDLINE boolean parameter is enabled, then after the two pathnames specifying
filenames a command line is parsed. The command line should be separated from the second
filename specification with one or more blanks. This command line is passed to the loaded
kernel as specified for the lDOS load protocol. (The FreeDOS kernel was extended to also use
a command line passed this way.)

If the CMDLINE parameter is enabled but no command line content is specified, then an empty
command line is passed. Note that this differs from passing no command line. To pass no
command line, the CMDLINE parameter must be disabled.

As a special case, semicolons are allowed within the specified command line and do not indicate
comments.

10.9.1.6 Boot load protocol compatibilities

The following notes are from lDOS boot.asm, in a comment titled ‘Notes about partial load
compatibilities’:

10.9.1.6.1 FreeDOS

• Relocates to an address other than 27A00h (1FE0h:7C00h)

95

This is true of the lDebug BOOT command as well. However, the original FreeDOS loader
relocation can be emulated by specifying aBPB=1FE0:7C00 parameter.

• A lot of options between _USE_PART_INFO, _QUERY_GEOMETRY, _CHS, _LBA,
and/or _RPL need to be disabled to make the loader fit

This is not a problem to the lDebug BOOT command.

10.9.1.6.2 DR-DOS

• Must enable _MEMORY_CONTINUE to load off file systems with cluster sizes > 1 KiB
(depending on file size) or >= 32 KiB (certainly)

• Will not load whole file if _MEMORY_CONTINUE is enabled and file data exceeds 29
KiB, without erroring out. The new option called _LOAD_CHECK_MAX_SIZE has been
added to address this. However, it won't fit without disabling some other options such as
_LBA, _CHS, _USE_PART_INFO, or _QUERY_GEOMETRY.

This is not a problem to the lDebug BOOT command. The full 29 KiB can be loaded regardless
of cluster size, given a sector size of 1 KiB or below.

• Disables DPT, data start, and directory entry to 00500h options by default so loading a
faithful IBMDOS v4+ kernel will fail as msload or lDOS iniload need these options to
operate

This is not a problem to the lDebug BOOT command. In fact the DRDOS protocol in lDebug
exactly matches the IBMDOS protocol except that it defaults to aMAXPARA=-1parameter.
Therefore a small enough IBMBIO.COM file can be loaded with the DRDOS protocol even if
it expects any of the bits and bobs provided by the IBMDOS protocol.

10.9.1.6.3 IBMDOS and MS-DOS 6

• Does not actually relocate DPT, just provide its address

Applicable to lDebug as well. The table can be relocated and modified by the user however, if
need be. This should be done after running a BOOT PROTOCOL command so as to pass the
original DPT address to the kernel.

• A lot of options between _USE_PART_INFO, _QUERY_GEOMETRY, _CHS, and/or
_LBA need to be disabled to make the loader fit

This is not a problem to the lDebug BOOT command.

10.9.1.6.4 MS-DOS 7

• Does not actually relocate DPT, just provide its address

Applicable to lDebug as well. The table can be relocated and modified by the user however, if
need be. This should be done after running a BOOT PROTOCOL command so as to pass the
original DPT address to the kernel.

• Does not contain message table used by loader

The message table is provided by the lDebug BOOT command if enabled using the
MESSAGE_TABLE parameter. This is default enabled for the MSDOS7 protocol.

96

10.9.1.7 Boot load protocol compatibilities additions

10.9.1.7.1 FreeDOS

The original FreeDOS loaders may misbehave trying to load a file that is larger than 128 KiB,
when rounded up to a full cluster boundary. The lDebug loader is impacted by this problem less.

10.9.1.7.2 DR-DOS

The DR-DOS and the original Enhanced DR-DOS load (prior to lDOS single-file EDR-DOS
load in 2024) are similar. They depend on the BIO file to be fully loaded. The BIO file is limited
to 29 KiB for DR-DOS load. (For original EDR-DOS load the BIO file has limits similar to the
kernel file for FreeDOS load.)

These loads do not use any directory entries nor file start clusters passed anywhere.
Consequently, they have to scan the root directory for their DOS files, namedIBMDOS.COMor
DRDOS.SYS. That means these files and their filenames cannot be overridden by the debugger.

DR-DOS load presumably uses only the load unit passed in the DL register to find the file system
that it wants to load its DOS file off. Original EDR-DOS load also used the hidden sectors in
the BPB pointed to by DS:BP to identify the correct file system.

10.9.1.7.3 IBMDOS and MS-DOS 6

Although the initial loader originally introduced for MS-DOS v4.00 is called the "Non-
Contiguous IBMBIO Loader (MSLOAD)" it does still depend on the first cluster of the BIO
file being cluster 2, the first data cluster of the file system. This was fixed as of MS-DOS v5.00
however.

Original loaders expect the BIO file as the first entry in the root directory and the DOS file as
the second entry. They also arrange for these entries to be loaded to linear 00500h and 00520h.
The debugger will allow any file in the file system to be used and will load the directory entries
to the expected locations, which may enable booting differently named or located files.

There is a problem with the DOS file loader: It may select a drive to load from using only the
load unit, but read the start cluster from the DOS file directory entry and use the data start sector
passed from the prior loader.

10.9.2 BOOT LIST command

BOOT LIST [unit|partition]

This command is used to list partitions on an MBR-style partitioned unit.

10.9.3 BOOT DIR command

BOOT DIR [partition] [pathname]

This command is used to list files within a directory of a FAT12, FAT16, or FAT32 file system. A
partition specification may be included. A pathname may be included; if it refers to a directory
then the contents are listed, otherwise the specified file is listed.

10.9.4 BOOT READ and BOOT WRITE commands

BOOT READ|WRITE [unit|partition] segment [[HIDDEN=sector] sector [count]]

97

These commands are used to read or write sectors from disks. After the command keyword, a
partition specification may be listed. Then, a segment must follow. This specifies the buffer to
use.

After the segment, an optional HIDDEN= keyword can be specified to specify a 32-bit sector
number base. This is useful to implement 33-bit LBA access, but note it will overwrite the
partition offset if a partition is specified. Instead of the HIDDEN= keyword, a HIDDENADD=
keyword can be specified. It also reads a 32-bit sector number base. However, as opposed to
HIDDEN=, HIDDENADD= will add to the hidden value of a specified partition, instead of
replacing it. If a whole unit without a partition is specified then HIDDEN= and HIDDENADD=
will result in the same offset being used.

After the segment and optional hidden keywords, a 32-bit sector number may be specified. It
defaults to zero. After the sector number, a 16-bit count may be specified. It defaults to one.

Note that sectors are read or written one sector at a time. If the interrupt 13h function used returns
an error 9 (boundary error), the debugger will attempt to use its auxiliary buffer to carry out the
read or write, copying data as appropriate. The auxiliary buffer is aligned so as not to cross a
64 KiB boundary in memory. (Error 9 is usually returned if trying to access too many sectors
at once or when diskette ISA DMA would cross a 64 KiB boundary.)

10.9.5 BOOT QUIT command

BOOT QUIT

This attempts to shut down the machine. A dosemu-specific callout will be attempted first, if
dosemu is detected. Using APM will be attempted next, which works on qemu. If neither works,
the debugger gives up.

10.10 C command - Compare memory
compare C range address

Given a range, the address of which defaults to DS, and another address that also defaults to
DS, this command compares strings of bytes, and lists the bytes that differ.

10.11 COUNT command - Count list length
count length COUNT [RANGE range|list]

This command parses a range or list parameter. The resulting pattern's length is displayed in
hexadecimal and decimal. TheCOUNTvariable is also set to the length count number. If a range
is given then the length has to fit into the segment.

10.12 D command - Dump memory
dump D [range]
dump bytes DB [range]
dump words DW [range]
dump dwords DD [range]

Given a range, the address of which defaults to DS, this command dumps memory in
hexadecimal and as ASCII characters. The range may be specified with a lines length (refer
to section 8.4). The default length if none is specified defaults to the number of lines specified

98

in the variableDEFAULTDLINESif it is nonzero, or else the number of bytes specified in the
variableDEFAULTDLEN.

If a lines length is used, that many lines are dumped. The count of lines does not include the
header or trailer if they're used. The count of lines will be inaccurate if the symbolic build is
used and the dump lists symbols that point into the dumped data. (The amount of data in this
case will match what it should be to produce the requested count of lines if no symbols were
listed.) The count of lines will be accurate if either the 40-column friendly mode is enabled or
not. If enabled, roughly half as much data is dumped for a given amount of lines, as the 40-
column mode dumps up to 8 bytes per line as opposed to the 80-column mode which dumps up
to 16 bytes per line.

If the DCO option 4 is set, text with the high bit set (80h to FFh, the top half of the 8-bit encoding
space) is displayed as-is in the text dump. If aTOPkeyword is used before the range, then top
half text is displayed as-is as well. Otherwise, it will be treated like nonprintable text, which
means it is replaced by dots in the text dump.

The variableDDTEXTANDis used as a mask to modify the text code before display. It defaults to
0FFh. Setting this to 7Fh will mimic MS-DOS Debug's display of text in its data dump, masking
off the high bit. In this case theTOPsetting has no effect.

If no range is specified, the D command continues dumping at "d_addr" (ADS:ADO), which is
updated by each D command to point after the last shown byte. The default length is determined
in the same way as for if a range without a length is specified. If autorepeat is used it behaves
the same way as a D command without a range.

The default is for D to dump bytes. After a DW or DD command, the autorepeat and plain D
(without a range) default to the last-used size. If the default range should be used but the size
should be reset to bytes, the DB command can be used. The D command with a range always
acts the same as DB.

10.13 DI command - Dump Interrupts
dump interrupts DI[R][M][L] interrupt [count]

The DI command dumps interrupt vectors from the IVT (86M) or IDT (PM). In PM, for the
vectors 00h to 1Fh, the exception handlers are also dumped. In 86 Mode, an interrupt chain is
displayed if more than one entrypoint is reachable from the topmost handler. To make the next
handler reachable, a handler must match one of several header / entry formats:

• IBM Interrupt Sharing Protocol (IISP) header (fully standard, with 10EBh entrypoint and
EBh jump to hardware reset - this matches what Ralf Brown's AMIS programs recognise)

• Non-standard IISP header

• iHPFS-style uninstalled IISP header (EA90h entrypoint)

• FreeDOS kernel relocation (near call followed by far jump immediate)

• Just a far jump immediate

If the R is specified (directly after DI) then 86 Mode handlers are dumped even if in PM.

If the M is specified then MCB names are displayed.

99

If the L is specified then AMIS interrupt lists are queried for the interrupt number being dumped.
This is so that the involved multiplex numbers and interrupt list indices can be displayed, and also
so that hidden chains can be dumped. This means chains that are not reachable from the topmost
IVT handler, but are found through the AMIS "Determine Chained Interrupts" call (either 03h
pointer or 04h list return). The list index is displayed as FFFFh if the handler was found with 03h
pointer return. Otherwise it indicates how many list entries precede the found handler's entry. For
example, ‘list:0000h ’ means that the first list entry matched, and ‘list:0001h ’ means
that the second list entry matched.

Specifying the L makes the debugger use its auxiliary buffer. That means the DIL command
cannot be used from the RE buffer if the T/TP/P silent buffer is used, or if RH mode is enabled.
In addition, note that with the default buffer size, no more than about a 1000 handlers can be
handled. (The actual limit may be as low as 500 handlers if a lot of hidden chains occur.) If the
limit is exceeded then the DIL command will display an error. The same error can also occur
if the chain loops, or references a single handler from more than one other handler, or a single
handler is listed by more than one multiplexer.

10.14 DM command - Dump MCBs
dump MCB chain DM [segment]

The DM command dumps an MCB chain. If not given a start MCB segment, and the debugger
is running as an 86-DOS application or device driver, the start of DOS's MCB chain is used. If
given a start MCB segment, this is used as the starting MCB. (Note: In current RxDOS builds,
the start MCB is always at segment 60h.)

The DM command initially lists the debuggee's PSP. This is only valid when the debugger is
running as an 86-DOS application or device driver.

The MCB chain dump is continued until an MCB is encountered that has neither an M nor a Z
signature letter, or the MCB address wraps around the 1 MiB boundary. In particular, this means
that a disabled UMB link MCB (usually pointing to the MCB at segment 9FFFh if there is no
EBDA nor any pre-boot-loaded programs) will not end the dump.

There is an Extension for lDebug (ELD) that also implements the DM command, known as
dm.eld. It adds some additional features. Refer to section 15.4.

Example output:

-dm
PSP: 2ACA
02B4 4D 0008 0018 384 B SD
02CD 4D 0000 0013 304 B
02E1 4D 02E2 00A8 2.6 KiB COMMAND
038A 4D 038B 00A8 2.6 KiB COMMAND
0433 4D 0434 2695 154 KiB LDEBUG
2AC9 5A 2ACA 7535 468 KiB DEBUGGEE
9FFF 4D 0008 2100 132 KiB SC
C100 4D 0008 0144 5.0 KiB SD
C245 4D 0000 0006 96 B
C24C 4D C24D 00A8 2.6 KiB COMMAND
C2F5 4D 0000 1D09 116 KiB
DFFF 4D 0008 1000 64.0 KiB SC

100

F000 4D F001 0019 400 B SEEKEXT
F01A 4D 0000 07F3 31.7 KiB
F80E 4D 0000 0090 2.2 KiB
F89F 4D 038B 001E 480 B COMMAND
F8BE 4D 02E2 0040 1024 B COMMAND
F8FF 5A C24D 0100 4.0 KiB COMMAND
-

The columns are as follows:

1. Segment address of MCB in hexadecimal. Always one less than the segment of the memory
block contents.

2. Signature letter in hexadecimal. Usually 4D (‘M’) for linking MCB and 5A (‘Z’) otherwise.

3. Owner of the MCB in hexadecimal. Values below 50h are special system values. 0 indicates
an unused MCB. 8 is the usualSC/SD/S system MCB owner. Higher values are generally
process segments. A process segment is usually a memory block that is preceded by an
MCB, which is owned by that block itself.

4. Size in paragraphs of the MCB in hexadecimal. A value of zero is valid and indicates an
MCB with an empty corresponding memory block.

5. Size in bytes or kibibytes, in decimal. This is a number of up to 4 digits, which may have
a fractional part, and a unit ofB (Bytes) orKiB (Kilo binary Bytes).

6. Name of the owner of this MCB. Free MCBs do not have a name. System MCBs have a
name that is up to two letters long. Otherwise, the name is read from the MCB owner's own
MCB. In this case the name is up to 8 letters long.

10.15 DZ/D$/D#/DW# commands - Dump strings
display strings DZ/D$/D[W]# [address]

The D string commands each dump a string at a specified address, which defaults to DS as the
segment.

• DZ displays an ASCIZ string, terminated by a byte with the value 0.

• D$ displays a CP/M-style string, terminated by a dollar sign character$.

• D# displays a Pascal-style string with a length count in the first byte.

• DW# displays a string with a length count in the first word.

10.16 D.A/D.D/D.B/D.L/D.T commands - Descriptor modification
These commands are only available in lDebugX (DPMI-enabled) builds. They can only be used
in Protected Mode. RC is set to 800h when attempting to use any of these commands while not
in Protected Mode.

Descriptor modification commands:
 (only valid in Protected Mode)
 Allocate D.A
 Deallocate D.D selector

101

 Set base D.B selector base
 Set limit D.L selector limit
 Set type D.T selector type

10.16.1 D.A command - Allocate descriptor

 Allocate D.A

Allocates an LDT descriptor from the DPMI host. Sets the variable DARESULT to the selector
if successful, else FFFFh. Sets RC to 801h or a DPMI error code (>= 8000h) on failure.

10.16.2 D.D command - Deallocate descriptor

 Deallocate D.D selector

Deallocates an LDT descriptor. Sets RC to 802h or a DPMI error code (>= 8000h) on failure.

10.16.3 D.B command - Set descriptor base

 Set base D.B selector base

Sets the base of an LDT descriptor. A useful shorthand is to use a construct like
‘LINEAR cs:0 ’ to get the base of a descriptor referenced by another selector. Sets RC to 803h
or a DPMI error code (>= 8000h) on failure.

10.16.4 D.L command - Set descriptor limit

 Set limit D.L selector limit

Sets the limit of an LDT descriptor. Limits beyond FFFFFh must be 4 KiB aligned (low 12 bits
set). Sets RC to 804h or a DPMI error code (>= 8000h) on failure.

10.16.5 D.T command - Set descriptor type

 Set type D.T selector type

Sets the type of an LDT descriptor. 00FAh is a 16-bit code segment, 4000h is the D/B bit (Default
size / Big), so 40FAh is a 32-bit code segment. 00F2h is a 16-bit data segment. 8000h is the G
bit (Granularity); modifying it may change the limit. The DESCTYPE keyword can be used in
an expression to read the current type of a descriptor, refer to section 9.7. Sets RC to 805h or a
DPMI error code (>= 8000h) on failure.

10.17 DT command - Dump text table
dump text table DT [T] [number]

Without a number parameter and without the T specifier, an ASCII table (codepoints 00h to
7Fh) is listed with short names for unprintable ASCII but the text itself for printable ASCII. The
table lists the decimal and hexadecimal numbers. Without a number parameter but with the T
specifier, a similar table depicting the top half of the 8-bit codepoint space is listed (values 80h
to FFh).

With a parameter, each byte of the specified number is displayed in decimal, hexadecimal, and
the short name or the text itself (quoted). If the T specifier is present, top half text (value >= 80h)
is displayed quoted, otherwise it instead displays as ‘top ’. The command will loop starting with

102

the least-significant byte of the number, then continue with subsequent bytes until all remaining
bytes are equal to zero. All up to four bytes are listed on the same line.

Note that without the T specifier, no codepage dependent text is displayed. The T stands for
‘ top ’.

10.18 E command - Enter memory
enter E [address [list]]

The E command is used to enter values into memory. If the list is specified, its contents are
written to the address specified. Otherwise, the interactive enter mode starts at the address
specified. If no address is specified then interactive enter mode starts at the last used address. This
is behind the last byte written by a prior E command, or at the last byte displayed in interactive
enter mode.

In the interactive enter mode, the segmented address is displayed, and then the current byte
value (2 hexadecimal digits) found at that address yet. Following the value a dot is displayed.
For example:

-e 100
1FFE:0100 C3.

At this point the debugger accepts several different inputs:

• One or two hexadecimal digits: To enter a new value to be written at this address

• A blank: To write the new value (if any) and proceed to the next byte

• A minus: To write the new value (if any) and proceed to the prior byte

• Carriage Return, Line Feed, or a period: To write the new value (if any) and quit interactive
enter mode

• Backspace: To delete the most recently entered digit of a candidate new value

• All other inputs are ignored

After entering a blank, the debugger will either display the next byte's current value in the same
line or start a new line with the current segmented address and then the current byte value. A
new line is started if the current offset is divisible by 8. For example, after entering 8 blanks:

-e 100
1FFE:0100 C3. CC. CC. CC. CC. CC. CC. CC.
1FFE:0108 CC.

After entering a minus, the minus is displayed on the current line and then (always) a new line
is started to display the new segmented address (with its offset decremented). For example,
entering a new value (‘A0’), then a blank, then a minus, and then another new value (‘A1’), then
a CR:

-e 100
1FFE:0100 C3.A0 CC.-
1FFE:0100 A0.A1
-

103

10.19 EXT command - Load and run an Extension for lDebug

run extension EXT [partition/][extensionfile] [parameters]

The EXT command is used to run an Extension for lDebug (ELD) file.

This command and the infrastructure needed for it, including two buffers of usually several
dozen KiB together, are only included when the debugger is built with the _EXTENSIONS
option enabled. (This is now the default.)

The ELD must be in a special executable format defined by the debugger. The current ELD
format starts with the magic bytes ‘ELD1’ at offset zero in the file. An ELD file typically has
a filename extension.ELD or .XLD though this is not required. (If theextname.eld is
installed it will check for either of the two known extensions, and if none is specified it will
guess the same two extensions in order.)

To load ELDs in the application mode or device mode debugger, the DOS file system is used.
That means DOS must be available for loading ELDs then. To load ELDs in the boot loaded
mode debugger, the auxiliary buffer must be available and int 13h is used to access a FAT file
system.

Like the Y command (refer to section 10.58.1), the EXT command pathname can be specified
with one of the debugger configuration path keywords. Also, if an EXT command doesn't find
a file specified without a configuration path keyword, the debugger will retry the file open with
the::scripts:: path prepended.

Unlike Script for lDebug files opened with the Y command, Extensions for lDebug may be run
with parameters specified after the ELD filename. The ELD receives the parameters as free form
string data which it is free to interpret as it wishes. A semicolon may or may not be interpreted
as a comment indicator by an ELD. The ELD can expect that within 256 bytes a Carriage Return
occurs.

Some ELDs can install themselves as resident Extensions to the debugger, hooking into the
command dispatch to run their own command rather than the debugger's default. All resident
ELDs provide a command hook, at least for their respective uninstall commands. Some resident
ELDs may hook into other parts of the debugger as well.

10.19.1 Current ELDs

The ELDs are described in detail in section 15. The following ELDs are provided currently:

LDMEM

Displays information on memory use of the debugger. Can be installed residently
with INSTALL parameter to provide theLDMEMcommand, and uninstalled with an
LDMEM UNINSTALLcommand.

HISTORY

Lists the command history of the debugger, or clears it. Can be installed residently
with INSTALL parameter to provide theHISTORYcommand, and uninstalled with a
HISTORY UNINSTALLcommand.

104

DI

Re-creation of the DI and DIL commands of the debugger. This allows to use the DI
commands when the debugger is built with the_INT=0 build option. Can be installed
residently withINSTALL parameter to provide theDI command, and uninstalled with a
DI UNINSTALL command.

DM

Re-creation of the DM command of the debugger. This allows to use the DM command
when the debugger is built with the_MCB=0build option. Can be installed residently with
INSTALL parameter to provide theDMcommand, and uninstalled with aDM UNINSTALL
command.

RN

Re-creation of the RN command of the debugger. This allows to use the RN command when
the debugger is built with the_RN=0build option (as is the default now). Can be installed
residently withINSTALL parameter to provide theRNcommand, and uninstalled with an
RN UNINSTALLcommand.

RM

Re-creation of the RM command of the debugger. This allows to use the RM command
when the debugger is built with the_RM=0build option (as is the default now). Can be
installed residently withINSTALL parameter to provide theRMcommand, and uninstalled
with anRM UNINSTALLcommand.

X

Re-creation of the X commands of the debugger. This allows to use the X commands when
the debugger is built with the_EMS=0build option (as is the default now). Can be installed
residently withINSTALL parameter to provide theX commands, and uninstalled with an
X UNINSTALLcommand.

DX

Re-creation of the DX command of the debugger. This allows to use the DX command
when the debugger is built with the_DX=0build option (which is the default as of release
9). Can be installed residently withINSTALL parameter to provide theDXcommand, and
uninstalled with anDX UNINSTALLcommand. This ELD requires a 386+ machine.

INSTNOUN

Displays information on install flags of the debugger. These are the nouns accepted
by the INSTALL and UNINSTALL commands. Can be installed residently with
INSTALL parameter to provide theINSTNOUNcommand, and uninstalled with an
INSTNOUN UNINSTALLcommand.

RECLAIM

Transient utility to reclaim unused space in the ELD code buffer and the ELD data blocks
buffer. This is no longer needed because the debugger now includes the implementation of
this tool and automatically reclaims memory before loading an ELD.

105

ELDCOMP

A tool to compare an ELD with its XLD counterpart. XLD is the filename extension
typically used to hold a build of an ELD with some linker optimisations. ELDCOMP allows
to compare the two, helping to identify and locate relocation errors in the ELD to be tested.

AFORMAT

Once installed, this ELD hooks into the assembler. After a line is submitted to the
assembler, the AFORMAT ELD will dump in hexadecimal the bytes written by the
assembler.

AMISMSG

This ELD hooks into the debugger's AMIS interface. It provides the AMIS functions 40h
and 41h to send messages to the debugger terminal. A message may consist of up to 383
bytes of text. The message is displayed either on the next command being read in the
cmd3 command input loop using a command injection handler, or when the command
‘AMISMSG DISPLAY’ is run.

AMOUNT

This ELD once installed provides theELDAMOUNTvariable. This variable can be read to
obtain the amount of installed ELDs.

BASES

A converter for different numeric bases. Can accept a numeric parameter to be evaluated by
the expression evaluator. Using aBASE=specifier or the name of a base (HEXADECIMAL,
DECIMAL,BINARY,OCTAL) the input number may be specified as a literal, which accepts
unsigned numbers of up to 64 bits. Output is in the four known bases, formatted to resemble
the expression evaluator's literal input format. Output can be in one arbitrary base using
a trailingOUTPUTkeyword, followed byBASE=, GROUP=, andWIDTH=specifiers. The
BASES ELD can be installed residently using anINSTALL parameter to provide the
residentBASEScommand.

CO

Installs the COPYOUTPUT commands. Once a file is specified with
‘COPYOUTPUT NAME filename’ the debugger opens the file to append to it. While
not InDOS all output to the debugger terminal is written to the opened file.

CONFIG

Allows to show or set the debugger config paths.

DTADISP

Displays the current DOS Disk Transfer Address.

IFEXT

Allows to run another command conditionally, using a command of the
form IF [NOT] EXT "extension name" THEN command . May be used as a
transient ELD or installed residently using anINSTALL command to provide theIF EXT
commands.

106

KDISPLAY

Displays the current K/N command buffers' content.

LIST

Displays the description lines for ELD files that are specified with a single pathname
pattern. The pattern may contain wildcards in the last component. After the pathname,
several keywords may be specified:VERBOSEto display technical details,HELPto display
the help, andSFNto force use of the DOS SFN find interface instead of trying the DOS
LFN find interface.

PRINTF

Allows to print formatted output. Can be installed residently or used as a transient tool.

SET

Allows to access the environment block to read or write variables. Can install a resident
SETcommand using anINSTALL parameter, or run transiently using aRUNparameter.

USEPARAT

Installs an output hook into the debugger to display an underscore line after disassembling
near or far jumps or near, far, or interrupt return instructions.

VARIABLE

Installs a command preprocessor hook to expand ‘%VARIABLE%’ specifications in
commands.

WITHHDR

Installs a prefix command calledWITH. This can be used asWITH HEADERor
WITH TRAILERto temporarily set DCO flags to enable D command headers or trailers.
Command injection is used to reset the flags afterwards.

AMISCMD

This ELD hooks into the debugger's AMIS interface. It provides the AMIS function 43h
to inject commands into the debugger.

AMISOTH

This ELD hooks into the debugger's AMIS interface. It provides the AMIS function 42h
to export the debugger's link info as an "other link".

AMITSRS

Port of Ralf Brown's AMIS TSR lister.

BOOTDIR

List directory entries in bootloaded mode.

DBITMAP

Dump 8-bit-wide graphics from memory.

107

DOSCD

Change DOS current directory or drive.

DOSDIR

List directory entries using DOS.

DOSDRIVE

Get or set a DOS drive.

DOSPWD

Display DOS current directory.

EXTNAME

Installs residently to guess EXT and Y command filename extensions.

INJECT

Injects commands into other debugger instance using the other's AMIS function 43h. (This
function is provided by the AMISCMD ELD.)

INSTNOTH

INSTNOUN variant that operates on another debugger instance. This requires the other
instance to have installed the AMISOTH ELD and its AMIS handler to provide the AMIS
function 42h.

LDMEMOTH

LDMEM variant that operates on another debugger instance. This requires the other
instance to have installed the AMISOTH ELD and its AMIS handler to provide the AMIS
function 42h.

LINFO

Installs residently to display status of program-loading L command.

PATH

Provides path search and filename extension guessing for the K and N commands.

EXTLIB

Library of ELDs to be used instead of single files.

EXTPAK

Compressed library of ELDs.

QUIT

Quits the machine. Can be installed residently.

108

DOSSEEK

Get or set the DOS 32-bit seek of a process handle.

ALIAS

Define simple aliases that are replaced in a command preprocess handler.

DPB

Display a DOS drive's DPB (MS-DOS v4 to v6 layout, optionally with FreeDOS, MS-
DOS v7.10, or EDR-DOS FAT32 extensions).

RDumpIdx

Dump text bytes pointed to by DS:SI and ES:DI in R register dump.

RDumpStr

Dump text pointed to by DS:DX in R register dump.

CHECKSUM

Calculate checksum over a memory range, as a transient command or installed residently.

HINT

Display TracList listing offset hints for all installed ELDs, writing to the terminal of another
debugger instance (using its AMISMSG service). Can be used as a transient command or
installed residently.

HINTOTH

Display TracList listing offset hints for all installed ELDs of the other link debugger
instance (using its AMISOTH service). Can be used as a transient command or installed
residently.

CHSTOOL

Utilities to work with int 13h unit partitions and geometry. Can be used as a transient
command or installed residently.

S

Replaces the S command (section 10.47) with additional support for WILD and CAPS
keywords.

DOSSPACE

Display DOS drive total and free space

DOSSTRAT

Display DOS memory allocation strategy and UMB link status

DHM

Dump HMA Memory Control Block chain

109

ERRFIX

Fix error message display

RCEXEC

Add RC.EXECUTE command to fill RC buffer then immediately run it

10.20 F command - Fill memory
fill F range [RANGE range|list]

The F command fills memory with a byte pattern. The first parameter is the range to fill. The next
parameter can be a list, in which case it provides the pattern with which to fill. If the RANGE
keyword is provided then the pattern is read from memory as indicated by the range parameter
that follows the keyword. The pattern is repeated so as to fill the destination. If the RANGE
keyword is used, then the length of the pattern address range is optional. If the length is absent,
it is assumed to equal that of the destination range.

10.21 G command - Go
go G [=address] [breakpts]

The G command runs the debuggee. It can be given a start address (the segment of which defaults
to CS), prefixed by an equals sign, in which case CS:EIP is set to that start address upon running.
Note that if there is an error parsing the command line, CS:EIP is not changed. Further, if a
breakpoint fails to be written initially, CS:EIP also is not changed.

The G command allows specifying breakpoints, which are either segmented addresses (86M or
PM addresses depending on DebugX's mode) or linear addresses prefixed by an "@ " or "@(",
similar to how the BP command allows a breakpoint specification. G breakpoints are identified
by their position in the command line, as the 1st, 2nd, 3rd, etc. The build option_NUM_G_BP
specifies how many G breakpoints are supported. By default, 16 G breakpoints are supported.

The G AGAIN command re-uses the breakpoints given to the last (successfully parsed) G
command. It also allows an equals-sign-prefixed start address like the plain G command, in front
of the AGAIN keyword. After the AGAIN keyword, additional breakpoints may be specified.

If the command repetition of G is used, it is handled as if "G AGAIN" was entered, that is it re-
uses the same breakpoints as those given to the prior G command.

A G command that fails to parse will not modify the stored G breakpoint list. If an error occurs
during writing breakpoints, the list will have been modified already however.

The G LIST command lists the breakpoints given to the last (successfully parsed) G command.

The "content" byte in G LIST is usually CCh (the int3 instruction opcode), but retains its original
value if a failure occurs during breakpoint byte restoration.

Example output of G LIST:

-g 100 103 105
AX=3000 BX=0000 CX=0200 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
DS=1BA7 ES=1BA7 SS=1BA7 CS=1BA7 IP=0103 NV UP EI PL ZR NA PE NC

110

1BA7:0103 CD21 int 21
-g list
 1st G breakpoint, linear 0001_BB70 1BA7:0100, content CC
 2nd G breakpoint, linear 0001_BB73 1BA7:0103, content CC (is at CS:IP)
 3rd G breakpoint, linear 0001_BB75 1BA7:0105, content CC
-

The output is as follows:

• The 1-based index ordinal of the point.

• The linear address of the point. (21-bit for Debug, 32-bit for DebugX.)

• The segmented address of the point. Only listed if the point was specified in a segmented
form. That is, if the point was specified with a "@ " or "@(" prefix then no segmented
address is saved along with it. (Internally, the word or dword "preferred offset" variable
is set to all 1 bits then.) In Protected Mode, the segment is specified as ‘CS: ’ if the code
segment's base matches the preferred offset. Otherwise, an R86M segment is shown with
a dollar sign ‘$’ prefix if the preferred offset matches any R86M segment. Failing that the
offset is shown with a prefix reading ‘????: ’.

• The content byte. This is usually CCh. However, if a breakpoint failed to be restored then
the original value is displayed here.

• Indicator that this point matches the current CS:IP or CS:EIP. This is only displayed if
such a match is applicable. Running G AGAIN when this is applicable will step one time
to bypass the corresponding point.

There is another G command: After any equals sign, AGAIN keyword, and/or specified
breakpoints, the line can be ended with a REMEMBER keyword. This saves the specified G
breakpoint list and then returns control to the user. (The equals address, if any, is discarded.) It
allows preparing a G breakpoint list ahead of its use. Auto-repeat, if enabled, will run like G
AGAIN and actually run the debuggee after a G REMEMBER command.

10.22 GOTO command - Control flow branch
goto GOTO :label

The GOTO command can only be used when executing from a script file, the command line
buffer, or the RE buffer. It lets execution continue at a different point in the file or buffer. Labels
are identified by lines that start with a colon, followed by the alphanumeric label name, and
optionally followed by a trailing colon. The destination label of the GOTO command may be
specified with or without the leading colon.

There are several special cases:

• If the destination label is :SOF (Start Of File) then the file or buffer completely rewinds to
its start.

• If the destination label is :EOF (End Of File) then the file or buffer is closed.

• If the destination label is not found then the file or buffer is closed, along with an error
message.

111

10.23 H command - Hexadecimal add/subtract values
hex add/sub H value1 [value2 [...]]
base display H BASE=number [GROUP=number] [WIDTH=number] value

The H command performs calculation and displays the result. If a single expression is given then
its value is displayed, in hexadecimal and then in decimal. If more than one expression is given
then two results are displayed, in hexadecimal only. The first result is that which is calculated by
adding all expressions. The second result is calculated by subtracting all subsequent expressions
from the first expression's value.

If a value is above or equal to 8000_0000h then along each display of that value, the value
interpreted as a negative two's complement number is listed in parentheses.

If the form with theBASEkeyword is given then only one number is displayed. The specified
base may be between 2 and 36, inclusive. If theGROUPkeyword is also used then digits are
grouped. The group separator is the underscore, ‘_’. The grouping number must be below or
equal 32 (20h). The default grouping is none, same asGROUP=0. If theWIDTHkeyword is also
used then at least that many digits are displayed. The width must be below or equal 32 (20h).
The default width is one digit, same asWIDTH=0or WIDTH=1.

Examples:

-h 1
0001 decimal: 1
-h 1 1
0002 0000
-h 1 1 1
0003 FFFFFFFF (-0001)
-h 1 + 2 * 3
0007 decimal: 7
-h cs * 10
0001A730 decimal: 108336
-h -26
FFFFFFDA (-0026) decimal: 4294967258 (-38)
-h base=2 group=8 AA55
10101010_01010101
-h base=2 group=4 width=#16 #1234
0000_0100_1101_0010
-h base=#10 group=3 400*400
1_048_576
-h base=3 group=3 FFFF_FFFF
102_002_022_201_221_111_210
-

10.24 I command - Input from port
input I[W|D] port

The I commands input from an x86 port. The port can be any number between 0 and FFFFh.
Plain I inputs a byte from the specified port. The IW and ID commands input a word or dword
respectively.

112

10.25 IF command - Control flow conditional
if numeric IF [NOT] (cond) THEN cmd
if script file IF [NOT] EXISTS Y file [:label] THEN cmd
if variable IF [NOT] EXISTS R variablename THEN cmd

The IF command allows specifying a conditionally executed command. This is especially useful
for creating conditional control flow branches with the GOTO command (see section 10.22).

For the first form, the condition is a numeric expression. If it evaluates to non-zero it is considered
true. If the NOT keyword is absent then a true condition expression leads to executing the THEN
command. With the NOT keyword present the logic is reversed. Note that if an error occurs in
parsing, the THEN command is not executed, regardless of whether the NOT keyword is present.

The second form specifies a script file in the same format as accepted by the Y command (refer
to section 10.58). A label may be specified behind the filename, as for the Y command. If
the file is found, and contains the specified label if any, then the EXISTS clause is considered
true. Depending on the presence of the NOT keyword the THEN command is executed next, or
skipped. Note that if an error occurs in parsing, the THEN command is not executed, regardless
of whether the NOT keyword is present.

Likewise, if an unanticipated error occurs during access then the THEN command is not
executed. Anticipated errors include:

1. The drive or ROM-BIOS unit cannot be accessed at all. (Determined by sector 0 being
unreadable.)

2. The specified partition is not found.

3. A specified directory is not found.

4. The file is not found.

5. A DOS error occurs opening the file.

6. The file is empty.

7. A specified label is not found.

The third form checks for a variable name being recognised like for the R variable access
command. If the variable name is recognised the condition is considered true. Otherwise, the
candidate name is skipped by scanning for the first blank or comma, except for parenthetical
index expressions which are parsed as expressions. The condition is considered false if no
variable is recognised.

10.26 INSTALL command - Install optional features
This command can be used to enable certain optional features. The parameters are a list of
comma-separated keywords. First the entire list will be parsed. Upon successful parsing of all
keywords the command will then start to handle the keywords.

The first keyword to theINSTALL command may be theTOGGLEkeyword. In this case the
subsequently specified keywords are toggled rather than enabled.

Save for the ‘AREAS’ keyword, these features can be accessed by using the corresponding DCO

113

flags as well. The allowed keywords are:

INT2F

DPMIHOOK

(lDebugX-only) Enable installing debugger's interrupt 2Fh hook to intercept the DPMI
entrypoint function call. The interrupt hook will actually occur upon running any debuggee
code in Real/Virtual 86 Mode. If the debugger is unable to hook the DPMI entrypoint then
a message is displayed and the DCO4 flag is cleared. This is expected on MSWindows 4
and old dosemu versions. This hook is enabled by default. This keyword controls DCO4
flag 0002h.

FAULTS

INTFAULTS

Install debugger's interrupt 0Dh and 0Ch hook. These interrupts may be called by the
machine in Real 86 Mode, or by a VMM like dosemu2 in Virtual 86 Mode, to indicate
faults occurred. Interrupt 0Dh indicates a General Protection Fault, while interrupt 0Ch
indicates a Stack Fault. (If an address faults with the SS segment it is considered a Stack
Fault.) Both of these interrupt handlers are usually called for IRQs as well, however. The
debugger's handlers will check whether the corresponding IRQ is being serviced. If it is,
the call is chained to the debugger's downlink. Only if the IRQ is not being serviced, the
debugger will handle the call as a fault. (This heuristic is not perfect, but it works most of
the time.) This keyword controls DCO4 flag 0010h.

INT08

INT8

TIMER

Install debugger's interrupt 8 hook for the timer tick IRQ. This enables the Interrupt 8
Control pressed detection depending on the INT8CTRL variable (refer to section 12.27)
as well as the double Control-C via serial I/O detection. This keyword controls DCO4 flag
0004h.

INT2D

AMIS

Install debugger's AMIS interface on interrupt 2Dh. A free multiplex number must be
available and the existing interrupt vector must be valid for this to succeed. This keyword
controls DCO4 flag 0008h.

AREAS

(lDDebugX-/lCDebugX-only) Install this debugger's exception areas into another
debugger. The other debugger must have its AMIS interface installed at the point in time
that this command is run. This keyword does not correspond to any DCO flags.

SERIAL

Install serial I/O for the debugger interface. Configuration must be ready, refer to section
12.11. This keyword controls DCO flag 4000h.

114

INDOS

Enter force InDOS mode. The debugger will avoid calling DOS in this mode, helping in
debugging DOS or the interrupt 21h or 2Fh handlers. This keyword controls DCO flag
0008h.

GETINPUT

Enter the use DOS getinput mode. When DOS is available and used for I/O, this mode
enables use of the debugger'sgetinput function rather than using the DOS interrupt 21h
service 0Ah line editor to read from standard input. The debugger's line editor includes
proper line editing, allows overlong input with a horizontally scrolling view of the buffer,
and enables history recall. This keyword controls DCO flag 0800h.

RHIGHLIGHT

Enable R command register change highlighting. This keyword controls DCO3 flag
04_0000h.

AUTOREPEAT

Enable autorepeat while reading from a terminal. This feature is enabled by default. This
keyword controls DCO3 flag 1000_0000h (in reverse).

BIOSOUTPUT

Prefer to output to video ROM-BIOS terminal using interrupt 10h services instead of to
the DOS interrupt 21h. This keyword controls DCO6 flag 0200h.

FLATBINARY

FSWITCH

Enable flat binary read mode, in which MZ .EXE files and .HEX files are read and written
as if they were flat binaries. This feature is also controlled by the /F+ or /F- switches. This
keyword controls DCO6 flag 0400h.

BIGSTACK

ESWITCH

Enable .BIG style stack mode, in which flat binaries are loaded with the stack set up in
a separate segment. This allows to execute .BIG style flat format executables like used in
the build process of the debugger itself. This feature is also controlled by the /E+ or /E-
switches. This keyword controls DCO6 flag 0800h.

RH

Enable RH mode. In RH (Register dump History) mode, a number of the last R, RE, T, TP,
P, or G outputs are buffered in the auxiliary buffer. (The auxiliary buffer is about 8 KiB
large by default.) The RH command can then be used to display all or some of the steps
of the buffered contents. Other commands that use the auxiliary buffer, like RN and RM,
cannot run when this mode is enabled. Enabling RH mode will clear the RH/silent buffer.
This keyword controls DCO6 flag 10_0000h.

115

DEBUG

(lCDebug-only) Enable debuggable mode. The conditionally debuggable debugger
defaults to start up in debuggable mode. This feature is also controlled by the /D+ or /D-
switches. This keyword controls DCO6 flag 0100h.

PAGING

Enable paging. This feature is enabled by default. This keyword controls the DCO1 flag
10h (in reverse).

PAGINGRC

Enable paging when running RC buffer commands. This keyword controls the DCO3 flag
1000h.

PAGINGY

PAGINGSCRIPT

Enable paging when running Script for lDebug commands. This keyword controls the
DCO3 flag 2000h.

PAGINGRE

Enable paging when running RE buffer commands. This keyword controls the DCO3 flag
4000h.

RX

REGS386

Enable 32-bit and 386 registers display. This keyword controls the DCO1 flag 1. This flag
is also toggled by theRXcommand, section 10.41.

TM

TRACEINTS

Enables tracing into software interrupt handlers. This keyword controls the DCO1 flag 2.
This flag is also accessed by theTMcommand, section 10.50.

HOUDINI

Enables breaking on houdini breakpoints in Extensions for lDebug. This only takes effect
in lDDebug, or in lCDebug with debuggable mode enabled. This keyword controls the
DCO7 flag 100h.

DEBUGOPTLINK

Enables debugging output of missing optional links in Extension for lDebug linker. This
keyword controls the DCO7 flag 2.

QUIETINSTALL

Enables suppressing Extension for lDebug installation messages. This keyword controls
the DCO7 flag 4.

116

QUICKRUN

Enables quickly running Extensions for lDebug. This keyword controls the DCO7 flag 8.
Only quit.eld is affected by this yet.

10.27 L command - Load Program
load program L [address]

10.28 L command - Load Sectors
load sectors L address drive sector count

Loads sectors from a local DOS drive. The count specifies how many sectors to load. The sector
number specifies where on the drive to load from. The drive specifies the drive to access, and is
specified either as an expression or a drive letter with trailing colon (section 8.13). The address
is a segmented address indicating where to write the sector data.

The reverse is the Write Sectors command, section 10.56.

10.29 M command - Move memory
move M range address

This command copies data from one memory range to another range. The source range is
specified as the first parameter. The destination is specified as the second parameter, which only
accepts an address. The length of the destination is equal to the length of the source.

If the source and destination overlap, the data movement is insured to be done in the direction
which will end up with the original source data found intact at the destination. If the source and
destination do not overlap then the movement may be done forwards or backwards.

10.30 M command - Set Machine mode
80x86/x87 mode M [0..6|C|NC|C2|?]

An M command without parameters, with a single ‘?’ parameter, with an ‘NC’ parameter, or a
single expression parameter is a get or set machine mode command.

The machine mode is used by the assembler and disassembler to show machine requirements
exceeding the current machine.

A plain ‘M’ or ‘ M ?’ command displays the current machine.

An ‘M NC’ or ‘ M C0’ command sets the current coprocessor to absent.

An ‘M C’ command sets the current coprocessor to present. It is set to the coprocessor type
corresponding to the current machine.

An ‘M C2’ command sets the current coprocessor to present, and the coprocessor type to 287.
This command is only valid if the current machine is a 386.

An M command with an expression evaluating to 0 to 6 sets the current machine to the specified
numeric value. It also sets the current coprocessor type corresponding to the specified numeric
value. Coprocessor presence is not modified by this command however.

117

Note that all machine mode commands that parse a numeric expression (not ‘M’, ‘ M ?’, nor
‘M NC’) will actually parse the expression twice due to the internal dispatching between the
machine mode commands and the move memory command. If the expression has side-effects
then these side-effects will also occur twice. (An example of a side effect is reading the LFSR
variable, which will step the LFSR.)

10.31 N command - Set program Name
set name N [[drive:][path]progname.ext [parameters]]

This command sets up the filename and parameters to use when setting up a new process using
the L (Load program) command. If the filename ends in.COMor .EXE it will be loaded as a
DOS program using the interrupt 21h service 4B01h. If the filename ends in.HEX it will be
interpreted by the debugger to load the contained data as a binary image. Otherwise the file is
loaded as a flat binary by the debugger itself. In any case, the PSP of the process created by the
L command will receive the command line tail, which starts after the filename.

Unlike Microsoft's Debug the executable filename is not included in the command line tail, and
an existing process won't be modified by the N command. It only sets the filename and tail for
L to use.

10.32 O command - Output to port
output O[W|D] port value

The O commands output to an x86 port. The port can be any number between 0 and FFFFh.
Plain O outputs a byte to the specified port. The OW and OD commands output a word or dword
respectively. The value to write is specified by the second expression.

10.33 P command - Proceed
proceed P [=address] [count [WHILE cond] [SILENT [count]]]

The P command causes debuggee to run a proceed step. This is the same as tracing (T
command) for most instructions, but behaves differently for ‘call ’, ‘ loop ’, and repeated
string instructions. For these, a proceed breakpoint is written behind the instruction (similarly
to how the G command writes breakpoints), and the debuggee is run without the Trace Flag set.

As an exception, if a near immediate ‘call ’ (opcode E8h) is to be executed and its callee is
a ‘retf ’ or ‘ iret ’ instruction, then the ‘call ’ instruction is traced and not proceeded past.
(This supports some relocation sequences.)

Like for the G command, a start address can be given to P prefixed by an equals sign. Next,
a count may be specified, which causes the command to execute as many P steps as the count
indicates.

After a count, a WHILE keyword may be specified, which must be followed by a conditional
expression. Execution will only continue if the WHILE expression evaluates to true.

After a count (when no WHILE is given) or after a WHILE condition, a SILENT keyword
and optional count may be given. In this case, the debugger buffers the register dump and
disassembly output of the executed steps, until control returns to the debugger command line.
Then, the last dumps stored in the buffer are displayed. If a non-zero count is given, at most that
many register dumps are displayed.

118

10.34 Q command - Quit
quit Q

This command attempts to quit the debugger. It may fail if the currently attached process (if
any) does not return into the debugger's Parent Return Address upon running an interrupt 21h
function 4C00h in the debuggee context. It may also fail if any of the hooked interrupts cannot
be restored. In this case, setting the corresponding DCO4 flags can force unhooking upon a retry.

For quitting a device driver mode debugger, the QC and/or QD flags to the quit command must
be used. Refer to section 5.3 for a description of them.

If the debugger was attached to a DOS process the quit command will try to terminate the
process. If the quit command succeeds, the debugger will return to its own parent process.

If not attached to a DOS process the quit command acts differently. This is always true of
the bootloaded debugger, is true of the device driver mode debugger by default (absent any
ATTACH commands), and is true of the application mode debugger after a successful TSR
command (absent subsequent ATTACH commands). In this case, a quit command that succeeds
will continue to run the current debuggee code in the exact state it was left in last.

The bootloaded debugger offers the BOOT QUIT command which will try to quit the currently
running (virtual) machine rather than quitting the debugger. It is described in section 10.9.5.

The quit Extension for lDebug (section 15.44) acts like the BOOT QUIT command but can be
loaded as an ELD even when in a DOS mode.

If the QB flag to the quit command is used, then the debugger will run a breakpoint in its quit
handler, if the quit command succeeds. This breakpoint runs after the debugger has uninstalled
its interrupt handlers. Refer to section 10.36.

10.35 QA command - Quit attached process
quit process QA

The QA command tries to quit an attached process. It does this by resetting the current cs:eip,
ss:esp, efl, and (only for DebugX) all segment registers. Then it runs interrupt 21h service 4C00h
in the context of the current debuggee. Afterwards it reports on how the debugger regained
control and whether the attached process terminated.

(If between the current debuggee's process and the debugger's process there is any process that is
self-parented, or a breakpoint interrupt or trace interrupt is caused by the current process having
terminated, then the attached process may be considered not terminated.)

The same underlying function is used by the program-loading L command and the default Q
command (except if the debugger is running in TSR mode or bootloaded).

10.36 QB command - Quit and break
quit and break QB

The QB command is composed of a Q command with a B flag. It indicates to the debugger
to quit as usual, but to then run a breakpoint just before the debugger returns the control flow
to either the OS, the application that executed the debugger, or (when resident as TSR, device
driver, or bootloaded) the current debuggee.

119

When successful, this instance of the debugger has already uninstalled all its interrupt hooks,
so the breakpoint will run the interrupt 3 handler that was installed prior to the debugger having
been installed.

10.37 R command - Display and set Register values
register R [register [value]]

The R command without any register specified dumps the current registers, either displayed
as 16-bit or 32-bit values (depending on the RX option), and disassembles the instruction at
the current CS:(E)IP location. If the instruction is a conditional jump then the R command
disassembly will include a trailing notice that reads ‘jumping ’ or ‘ not jumping ’ depending
on the current status.

R with a register, named debugger variable, or memory variable (of the form
BYTE/WORD/3BYTE/DWORD [segment:offset]) displays the current value of the
specified variable. It then displays a prompt, allowing the user to enter a new value for that
variable. Entering a dot (.) or an empty line returns to the default debugger command line.

R with a variable, followed by a dot (.), only displays the current value of that variable.

R with a variable, followed by an optional equals sign, and followed by an expression, evaluates
the expression and assigns its resulting value to the variable. The equals sign may instead be a
binary operator with a trailing equals sign, which is handled as an assignment operator.

Examples:

-r ax .
AX 0000
-r ax
AX 0000 :1
-r ax
AX 0001 :.
-r ax += 4
-r ax
AX 0005 :
-r word [cs:0]
WORD [1867:0000] 20CD :
-r dif .
DIF 0100B00B
-

R with the special register nameF accesses the flags register using the symbolic flag states. Like
for regular registers, this will display all the current states then prompt for new ones, except if
a dot or at least one new flag state is specified trailing after theR Fcommand. Multiple flags'
states can be entered on the same line.

The table in section 18.3 lists the flag states that are recognised, in the third and fourth column.

It is valid to set two or more states for the same flag, with the last one winning. The new flag
state input line is parsed in two passes. An error that is detected during a subsequent parameter
will have the debugger not already having applied the earlier parameters. Only when the entire
line has been parsed successfully, the flag changes take effect.

120

10.37.1 RE command - Run register dump Extended

Run R extended RE

The RE command runs the RE buffer commands. Refer to section 18.7. The RE buffer has
the highest priority among all buffered commands. (The RC buffer and Y command Script for
lDebug files have a lower priority than the RE buffer.)

RE buffer commands are displayed with a prompt consisting of a percent sign%or, for DDebug
or for CDebug while in debuggable mode, a tilde followed by a percent sign~%.

10.37.2 RE buffer commands

RE commands RE.LIST|APPEND|REPLACE [commands]

RE.LIST lists the RE buffer contents in a way that can be re-used as input to RE.REPLACE.

RE.APPEND appends the following commands to the RE buffer. This command can overflow
the RE buffer, in which case the command aborts with an error. In this case the command has
no effect on the RE buffer contents.

RE.REPLACE replaces the RE buffer with the following commands. This command generally
cannot overflow the RE buffer.

The RE buffer usage is described in the ?RE help page (section 18.7).

10.37.3 RC command - Run Command line buffer

Run Commandline RC

The RC command runs the command line buffer commands. This is similar to the RE command,
except it uses a different buffer. Further, the RC buffer contents have the lowest priority among
all buffered commands. (The RE buffer and Y command Script for lDebug files have a higher
priority than the RC buffer.) Upon initialisation of the debugger the RC buffer is filled.

In case the debugger is loaded as a DOS application or DOS device driver, the RC buffer first
gets the configuration command. Then the debugger's init appends the content of the/C switch
(if any). If an /IN switch is specified, the RC buffer is cleared.

In case the debugger is bootloaded, the RC buffer receives the contents of the kernel command
line (if any) or the default kernel command line contents.

If the RC buffer is not empty, the equivalent to an RC command is run on startup of the debugger.
(This running happens after the initial N and L commands.)

Command line buffer commands are displayed with a prompt consisting of an ampersand& or,
for DDebug or for CDebug while in debuggable mode, a tilde followed by an ampersand~&.
When both RE and RC are running out of their respective buffers, the RE buffer contents take
precedence.

10.37.4 RC buffer commands

RC commands RC.LIST|APPEND|REPLACE [commands]

RC.LIST lists the command line buffer contents in a way that can be re-used as input to
RC.REPLACE.

121

RC.APPEND appends the following commands to the command line buffer. Like RE.APPEND
this will cause an error if the buffer overflows.

RC.REPLACE replaces the command line buffer with the following commands.

10.38 RH command - Display Register dump History steps
regdump history RH [IN value, value, ...|value]

The RH command displays steps from the RH/silent buffer while RH mode is enabled. RH mode
can be enabled using theINSTALL RH command. (Refer to section 10.26.) The parameter to
the RH command can be the keyword IN, followed by one or more comma-separated match
ranges, or by a single number, or no parameter at all.

The no parameter form displays all steps still saved in the RH buffer.

The one parameter form displays a single step from the RH buffer. The number 0 refers to the
most-recent saved step. The number 1 refers to the second most-recent saved step. And so on.

TheRH IN form accepts one or more match ranges. A match range can be:

• A single number. (Must be below 1_0000h.)

• The keywordFROMfollowed by a number followed by the keywordTO followed by a
number. (The second number must be above-or-equal the first number. Both must be below
1_0000h.)

• The keywordFROMfollowed by a number followed by the keywordLENGTHfollowed by
a number. (The length number plus the first number must be below-or-equal 1_0000h. A
zero-length is valid, and will produce no output.)

TheRH IN command will treat each match range by displaying the corresponding steps from
the RH buffer, but in chronological order. For instance, the following two commands are
equivalent:

rh in from 2 length 4

rh in 5,4,3,2

When parameters specify a number that is above the oldest still saved step in the RH buffer, the
behaviour is not certain and may yet change. (For now, each older step will display nothing.
This still may be subject to change.)

The RH command defaults to page its output, if paging is enabled. Paging can be disabled for
the RH command using the silent buffer output paging control. (This will, of course, also affect
the silent buffer output.) The commandr dco3 = dco3 clr 200 or 100 will instruct
the RH command to not page its output.

As an exception, if the RH buffer is empty then any valid RH command will produce no output
at all.

If RH mode is not enabled then the RH command may display stale or corrupted output, except
when run directly after a silent-buffered T/TP/P command. In the latter case, the RH command
will operate on the contents stored by the last run command.

122

10.39 RM command - Display MMX Registers

MMX register RM [BYTES|WORDS|DWORDS|QWORDS]

This command dumps all 8 MMX registers. It is only available if MMX is supported by the
machine. The optional size keyword specifies an item size, which defaults to BYTES. The
BYTES size will match memory order of the byte values, displaying the least significant byte's
value first. A size keyword of WORD will display the least significant word first, and so on.

MMX support is redetected when lDebugX enters or leaves Protected Mode. (dosemu2 may
support MMX in its Protected Mode while not supporting it in 86 Mode.)

This command is no longer included in the default build as of release 7. To use it, either enable
the build time _RM define or run ‘ext rm.eld install ’ to install it as an Extension for
lDebug.

10.40 RN command - Display FPU Registers

FPU register RN

This command is no longer included in the default build as of release 7. To use it, either enable
the build time _RN define or run ‘ext rn.eld install ’ to install it as an Extension for
lDebug.

10.41 RX command - Toggle 386 Register Extensions display

toggle 386 regs RX

This command toggles the DCO flag 0001h. The same flag can be set using the command
INSTALL RX or cleared using the commandUNINSTALL RX. This command is not valid on
a non-386 machine.

10.42 RV command - Show sundry variables

This command shows the first 16 user-defined variables (refer to section 12.16), the current
options variables DCO (that is DCO1), DCS, DAO, DAS, the internal flags DIF (that is DIF1),
as well as the debugger process segment (DPR), the debugger parent return address (DPI), and
the debugger parent process (DPP). lDebugX also shows the debugger process selector (DPS),
which is zero in 86 Mode and a selector value in Protected Mode. (All of these variables can be
queried manually, the RV command lists them merely for convenience.)

Additionally, in the last line the RV command displays the current debuggee's mode. This is
either Real 86 Mode, Virtual 86 Mode, or (lDebugX only) Protected Mode with either a 16-bit
CS or a 32-bit CS.

10.43 RVV command - Show nonzero user-defined variables

This command shows all user-defined variables (refer to section 12.16) that are not currently
zero. Variables are always shown four to a line, so a single non-zero variable will additionally
show up to 3 variables that are currently zero.

123

10.44 RVM command - Show debugger segments
This command shows various segments (and, in Protected Mode, selectors) used by the
debugger. It currently shows the following:

• Code segment

• Code2 segment (only if _DUALCODE build)

• Data segment

• Entry segment (same as data segment but with a code selector in PM)

• Message segment

• Auxbuff segment

• History segment

A more detailed list of the debugger's segments, including their sizes, can be obtained using the
ldmem Extension for lDebug (section 15.1).

10.45 RVP command - Show process information
This command shows the debugger's mode as well as some client and debugger process
addresses. The mode is one of:

• Boot loaded

• Device driver

• Application

• Application installed as TSR

The process addresses include:

PSP

Process Segment Prefix (always a 86M segment value)

Parent

Parent of the PSP (for the debugger the would-be parent for termination, however note that
during normal operation the debugger is self-parented)

Parent Return Address

16:16 far pointer (a segmented 86M far address) of the process's interrupt 22h value, the
entrypoint to return to the parent (again for the debugger this is the would-be PRA for
termination, during normal operation the debugger sets up its actual PRA to return control
to the debugger itself)

PSP Selector (only displayed for lDebugX)

A selector or segment value, appropriate for the current mode, to address the PSP

The process addresses can all be accessed individually too, using the following variables:

124

PSP

PSP (client), DPSP (debugger)

Parent

PARENT (client), DPARENT (debugger)

Parent Return Address

PRA (client), DPRA (debugger)

PSP Selector (always a segment if not lDebugX)

PSPSEL (client), DPSPSEL (debugger)

The DPARENT and DPRA variables read as all zeros when the debugger is loaded in bootloaded,
device driver, or resident application (TSR) mode.

10.46 RVD command - Show device information
This command shows the device header (segmented 86M) far address as well as the size of the
device's allocation, in paragraphs. If the debugger is not loaded in device mode then instead a
message indicating this is displayed.

The two variables can be accessed individually, too. These are the DEVICEHEADER and
DEVICESIZE variables. Both of them read as all zeros when the debugger is not loaded in
device mode.

10.47 S command - Search memory
search S range [REVERSE] [SILENT number] [RANGE range|list]

The S command searches memory for a byte string. The first range specifies the search space. By
default, searching will begin at the bottom of the search space and move upwards. If a REVERSE
keyword is specified after the range then searching will begin at the top of the search space
moving downwards. The search string is specified either with the RANGE keyword followed
by another range, or as a list of byte values.

If the SILENT keyword is specified, a silent number must be parsed before the list or range
parameter. The number specifies how many result lines are displayed at most. It is a 32-bit
unsigned number that may take any value in the range, including zero. If the number is zero,
only the amount of matches is displayed.

The read-only variable SRC (Search Result Count) will receive the 32-bit value that is the
amount of matched occurrences. The variable SRS0 receives the first Search Result Segment.
Likewise SRO0 receives the first Search Result Offset. SRO1 to SROF hold subsequent Search
Result Offsets. SRO is an alias to SRO0. SRO variables are 32-bit in the _PM build lDebugX,
16-bit otherwise. Unused SRO variables are zeroed out by a successful search. The COUNT
variable is set to the length of the search string.

The display of search results is as follows:

• First, the result's segmented address.

125

• Then, the displacement of the following dump. This is displayed with a leading plus sign
and some amount of hexadecimal digits (2, 4, 6, or 8 digits). The number is the length of
the search pattern (which is also written to the COUNT variable).

• Then, a hexadeximal dump of the up to 16 bytes that follow the search string match at this
point.

• Finally, the ASCII character dump of these up to 16 bytes.

There is an option to disable the data dump so as to only display the match addresses. If the bit
80_0000h is set in the DCO variable then the data dump is suppressed.

10.48 SLEEP command
sleep SLEEP count [SECONDS|TICKS]

The SLEEP command sleeps for the indicated length. The duration defaults to seconds. If the
TICKS keyword is specified then the duration is taken to mean timer ticks. (A timer tick is about
1/18 seconds.) If the input is from DOS or serial I/O then Control-C from the input terminal
may be used to cancel the sleep.

10.49 T command - Trace
trace T [=address] [count [WHILE cond] [SILENT [count]]]

The T command is similar to the P command. However, T traces most instructions. Depending on
the TM option (section 10.50), interrupt instructions are also traced (into the interrupt handler)
or proceeded past.

10.49.1 TP command - Trace/Proceed past string ops

trace (exc str) TP [=address] [count [WHILE cond] [SILENT [count]]]

The TP command is alike the T command, but proceeds past repeated string instructions like
the P command would.

10.50 TM command - Show or set Trace Mode
trace mode TM [0|1]

This instruction accesses the DCO flag 2. If run without an expression then the current status is
displayed. Otherwise tracing into interrupts (for the T and TP commands) is enabled (nonzero
expression) or disabled (zero expression).

10.51 TSR command - Enter TSR mode (Detach from process)
enter TSR mode TSR

This command tries to find the PSP to which the debugger is attached. It starts the search at
the current PSP and walks up the parent processes until finding the debugger. If a self-owned
process is encountered the search is aborted.

Once found, the attached PSP is patched with the PRA and parent process noted down for
the debugger itself. That is, the debugger's would-be parent is made the parent of the attached

126

process. The debugger's fields for original PRA and parent are cleared. Thus the TSR command,
if it succeeds, switches the debugger into resident mode.

The reverse operation is performed by the ATTACH command (see section 10.6). The TSR
command can be used right away in application mode, or can be used in device driver mode after
the debugger has been attached to a process using the ATTACH command. The default state of
the device driver mode debugger is resident mode.

The TSR command and the ATTACH command are not usable in bootloaded mode.

10.52 U command - Disassemble
unassemble U [range]

Given a range, the address of which defaults to CS, this command disassembles instructions from
memory. The range may be specified with a lines length (refer to section 8.4). The default length
if none is specified defaults to the number of lines specified in the variableDEFAULTULINES
if it is nonzero, or else the number of bytes specified in the variableDEFAULTULEN.

If a lines length is used, that many lines are disassembled. However, if a single instruction does
not fit within one line due to a too long string of machine code, then the lines used for this
instruction will count as one line as concerns the lines length. If an address length is specified,
all instructions that are contained within or start within the specified range are disassembled.

If no range is specified, the U command continues disassembling at "u_addr" (AUS:AUO),
which is updated by each U command to point after the last disassembled byte. The R command
sets "u_addr" to equal the current CS:(E)IP, including if the register dump is called by a run
command. The default length is determined in the same way as for if a range without a length
is specified. If autorepeat is used it behaves the same way as a U command without a range.

10.53 UNINSTALL command - Uninstall optional features
This command can be used to disable certain optional features. The parameters are a list of
comma-separated keywords. First the entire list will be parsed. Upon successful parsing of all
keywords the command will then start to handle the keywords.

The available keywords are documented for the INSTALL command, refer to section 10.26.

10.54 V command - Video screen swapping
view screen V [ON|OFF [KEEP|NOKEEP]]

The V commands allow to enable or disable video screen swapping. When enabled, the debugger
takes care that screen output of debuggee and debugger are strictly separated. This is useful to
debug fullscreen text mode programs.

The screen will be swapped whenever the debuggee is run with a run command (T/TP/P/G), or
when the plain V command is used. The plain V command is provided to watch the debuggee
screen while the debugger is active. It ends upon the user entering any key to the debugger
terminal.

Video screen swapping currently requires an XMS driver, and the debugger will allocate an
XMS memory block of 32 KiB.

127

V OFF KEEP will disable video screen swapping but keep the current debugger screen contents.
V OFF NOKEEP (and the default for V OFF if the keep flag has not been set) will instead return
to the debuggee screen contents. When the Q command succeeds, it executes the equivalent of
V OFF. That is it will use the current keep flag.

10.55 W command - Write Program
write program W [address]

10.56 W command - Write Sectors
write sectors W address drive sector count

Writes sectors to a local DOS drive. The count specifies how many sectors to write. The sector
number specifies where on the drive to write to. The drive specifies the drive to access, and is
specified either as an expression or a drive letter with trailing colon (section 8.13). The address
is a segmented address indicating where to read the sector data.

The reverse is the Load Sectors command, section 10.28.

Note that on MS-DOS v7 this command will lock and unlock the specified drive to insure it
is locked when writing. As there is no way to query the lock status, this will unconditionally
unlock the drive after writing.

Warning:You should know what you are doing if you use this command. Misuse may corrupt
any data stored on this drive.

10.57 X commands - Expanded Memory (EMS) commands
expanded mem XA/XD/XM/XR/XS, X? for help

These commands are no longer included in the default build as of release 7. To use them,
either enable the build time _EMS define or run ‘ext x.eld install ’ to install them as
an Extension for lDebug.

10.58 Y command - Run script file
run script Y [partition/][scriptfile] [:label]

The Y command runs a Script for lDebug file.

10.58.1 Y command pathnames

The script file is specified in two different ways, depending on whether the debugger is running
as an 86-DOS application or device driver, or rather as a boot-loaded kernel replacement.

• If running as an application or device driver, the script name is a regular pathname. It may
be quoted with doublequotes if the pathname includes blanks, semicolons, or commas. If
the indicated drive supports long filenames (LFNs) then the debugger will first try to open
the pathname as an LFN.

• Otherwise, the script name may start with a partition specification to use. (Refer to the
?BOOT help page in section 18.11 for partition specifications.) Then, the pathname relative
to that partition's root directory follows. Long filenames are not supported. Note that it is
not valid to run an empty script file when boot-loaded.

128

In both cases, commas are parsed as separators that end a pathname, except if they occur within
doublequotes. The same is true of semicolons. Semicolons may be parsed as end-of-line markers
as well.

10.58.1.1 Y command configuration pathes

A pathname may start with one of two special keywords to use one of the debugger configuration
pathes:

::config::

Access the debugger configuration directory

::scripts::

Access the debugger scripts directory

The pathname should not include a path separator (backslash or forward slash) directly after the
keyword.

The default path for the debugger configuration directory is detected as follows:

1. If the debugger is bootloaded, the configuration directory is set toldp/ .

2. If the environment variableLDEBUGCONFIGis set, read it.

3. Else, if the path to the debugger's executable can be determined, use that.

4. Else, the current directory on the current drive is used.

The default path for the debugger scripts directory is detected as follows:

1. If the debugger is bootloaded, the scripts directory is set toldp/ .

2. If the environment variableLDEBUGSCRIPTSis set, read it.

3. Else, if the path to the debugger's executable can be determined, use that.

4. Else, the current directory on the current drive is used.

The configuration pathes can be shown or modified using the ‘config ’ Extension for lDebug.

10.58.1.2 Y command default scripts path

If a Y command filename is not found, and no config path keyword was used, the debugger will
retry the file open with the::scripts:: path prepended to the specified filename. If this is
not desired, an explicit::empty:: path keyword may be used.

10.58.2 Y command labels

A label may be specified after a pathname to cause execution to start at that label instead of at
the start of the file. This is equivalent to placing a ‘GOTO :label ’ command at the start of
the script file. The colon to indicate a label is required.

If execution already is within a script file, then the Y command may be run with only a label
(again with the colon required). In that case, the current script file is opened in a subsequent
level (handle or boot-loaded script file context) and execution starts at that label.

129

10.58.3 Y command InDOS interaction

Opening a script file as DOS application or device driver only works while DOS is available
(InDOS not set). Additionally, if during script file execution DOS becomes unavailable (InDOS
is set) then the script file execution is paused. It is resumed once DOS becomes available again.
(Control-C with a non-zero IOL variable may still be used to cancel script file execution. DOS
is called to close affected handles only if DOS is available.)

10.59 Z commands - Symbolic debugging support
These commands are only supported if the _SYMBOLIC build option is enabled.

10.59.1 Z /S=size - Allocate, resize, or free symbol tables

The /S switch allows to change the symbol table allocation. The symbol tables may take up up
to 256 KiB of 86 Mode memory (below 1024 KiB) or up to 2 MiB of XMS memory. XMS use
implies an additional 65 KiB is allocated for padding and a transfer buffer.

XMS use can be forced by using a letter X behind the /S. 86 Mode memory use can be forced
by using a letter R instead. The prior selection can be undone using an asterisk *, returning to
the default behaviour. That means allocate XMS if available, and fall back to 86 Mode memory
otherwise.

After the equals sign a size is to be specified. The size can be an immediate number or an
expression, or the keyword MAX to use the maximum size. An expression must be surrounded
by round parentheses. The size specifies the amount of kibibytes to allocate. The size may be
zero, which signals to free all symbol tables. This deletes all symbols yet defined. Otherwise,
new symbol tables are allocated. Existing symbols will be transferred from the old symbol tables,
if there are any. It is an error to specify a symbol table size that is not large enough to hold all
currently defined symbols, except for specifying a zero size.

Multiple /S switches can be specified within the same Z command. They are processed one by
one, that is an error during parsing or execution of a subsequent switch will not make it so a
prior switch is skipped.

10.59.2 Z STAT - Show symbol table statistics

This command shows statistics on the current symbol table sizes, including the amount of total,
used, and free units. Each of the symbol main array, symbol hash array, and symbol string heap
are listed.

10.59.3 Z ADD - Add a symbol

This command is used to add a new symbol. It can be followed by several parameters. These
are:

SYMBOL= or S=

Name of the symbol, may be quoted

OFFSET= or O=

Offset of the symbol

130

LINEAR= or L=

Linear address of the symbol

FLAGS= or F=

Flags of the symbol

No keyword

Segmented address of the symbol to specify the linear address and offset

10.59.4 Z DEL - Delete a symbol

This command deletes a symbol. It can be followed by the symbol name to delete, or a RANGE
keyword and an address range parameter, or an UNREFSTRING keyword. The latter is to clean
up the symbol string heap by deleting entries that are no longer used.

10.59.5 Z COMMIT - Commit temporary symbols

Z ADD will batch up new symbols as temporary symbols. They are committed into the symbol
tables upon several conditions, such as no more space for temporary symbols or execution of
a command other than Z ADD or Z ABORT. The Z COMMIT command is for forcing the
temporary symbols be committed. This should not usually be required.

10.59.6 Z ABORT - Discard temporary symbols

This command discards all temporary symbols batched by prior Z ADD commands if they were
not yet committed. If the debugger responds to every command with the error message "Invalid
symbol table data!" then something went wrong with the committing of temporary symbols. In
this case the Z ABORT command may help to return the debugger to a usable state.

10.59.7 Z LIST - List symbols

10.59.8 Z MATCH - Match symbols

10.59.9 Z RELOC - Relocate symbols

131

Section 11: Assembler Reference

The assembler is accessed by running the A command (section 10.5). The prompt for the
assembler consists of a segmented address, with a 16-bit segment/selector and a 16-bit or 32-
bit offset. Entering an empty line (whitespace only) or a single dot to the assembler exits back
to the debugger prompt. Trailing comments may be added using semicolons.

11.1 Assembler comparison to MSDebug
Differences from MSDebug's assembler include:

• 386 level 32-bit operands and addresses are supported. The call, jmp, push, and pop
instructions with memory operands will assume a default WORD or DWORD size
depending on the D bit of the current CS being assembled into

• Immediate operand and displacement sizes (BYTE, WORD, DWORD) can be specified
to force longer encodings

• Disassembly defaults to NASM address syntax, lowercase output (except numeric digits),
and a blank after any comma

• Indentation of the first operand can be disabled, though it defaults to enabled

• Some NASM style instruction names likeretn , int3 , and xlatb are used in the
disassembly, and may be used with the assembler

• Segment overrides may be included in address operands rather than in a label-like form
(on a line of their own or as a prefix to an instruction, with a trailing colon)

• Segment overrides do not require a colon if they are placed before string instructions

• Segment overrides may be placed in a SEG pseudo-instruction

• The disassembler always shows a size for push or pop with a memory operand, although
the assembler can assume a default size

11.2 Assembler comparison to NASM
The assembler generally strives to accept assembly input matching the syntax of NASM (the
Netwide Assembler). Key differences:

• Labels are not supported

• Numeric input defaults to hexadecimal (while expressions in parentheses can switch base
using a ‘#’ prefix)

132

• Character constants are not supported directly, requiring an expression in parentheses
which accepts string literals

• SIB indexing must be done using exact numbers, multipliers like 9 or 5 are not
automatically parsed into valid SIB bytes

• The NOSPLIT keyword is not supported, and the assembler never splits indexing
expressions

• The MODRM keyword is added, which allows selecting non-default instruction encodings
(most of which are size pessimisations)

• LOOP instructions can be suffixed with a size letter ‘W’ or ‘ D’ whereas NASM requires
a second operand that reads ‘CX’ or ‘ ECX’. The NASM form is supported too, but the
disassembler defaults to the suffix form.

• A STRICT keyword is not accepted, instead size and distance keywords can be used to
force certain forms

• CALL FAR and JMP FAR will allow a single immediate number operand, assembling to
an imm:imm branch instruction with the segment equal to the segment currently being
assembled into

• Size and distance keywords can be followed by a ‘PTR’ keyword, which has no effect

11.3 Assembler roundtrip
The disassembler is supposed to generate output which is valid input to the assembler. Ideally,
any disassembly would make it through a "roundtrip", that is assembling the disassembly output
should result in exactly the same machine code bytes. This is not always true however.

For instance, the SIB long form encoding of a disp32-only memory address is disassembled just
as the non-SIB form, and the assembler currently lacks a way to force this encoding. Invalid
prefixes may also not roundtrip successfully. The order of multiple prefixes may also change,
which can be significant in some cases (eg the dispatchers for the disassembler's repeated string
op simulation). Additionally, the disassembler may display annotations like ‘(unused) ’ and
‘ [needs 386] ’. These must be stripped from the instruction to enter it into the assembler.
The same is true when running an R command (register dump) and its disassembly shows a
memory content annotation or the ‘jumping ’ or ‘ not jumping ’ notice.

11.4 Disassembly fields
The disassembly consists of several fields:

1. The segment which is being read, 4 hexadecimal digits

2. The offset of the first machine code byte in this line, 4 or 8 hexadecimal digits

3. The machine code dump, an even number of hexadecimal digits

4. The instruction mnemonic

5. 0 to 3 instruction operands, depending on the instruction

6. The annotation, optional

133

11.5 Assembly fields

The assembly input consists of:

1. The segment:offset that the next instruction will be written to, this forms the prompt for
the debugger's line input. Offset may be 4 or 8 hexadecimal digits.

2. The instruction mnemonic

3. 0 to 3 instruction operands, depending on the instruction

4. A comment indicated by a semicolon, optional

The assembler may emit an annotation after it accepts a line. This will be written to the next
line, and can read like ‘[needs 386] ’ or ‘ [needs math coprocessor] ’ depending
on the current machine type (section 10.30) and the needed machine type for the instruction.

Additionally, if the AFORMAT Extension for lDebug (section 15.12) is installed and enabled,
each accepted line to the assembler will reply with a machine code dump in a subsequent line.
This dump looks similar to the disassembler's dump. It will correspond exactly to what was
written by the assembler. (It checks which address was used for the last prompt and which
address is used for the next prompt. The ORG directive is handled as a special case.)

11.6 Assembly instruction reference

It is recommended to keep an instruction reference on hand. The old NASM instruction
reference does nicely for all 386-level instructions, though it lacks descriptions of
system structures like descriptors, the TSS, and the FSAVE format. It is hosted on
the web at https://pushbx.org/ecm/doc/insref.htm with its sources available in the repo at
https://hg.pushbx.org/ecm/insref/

11.6.1 Assembler instruction mnemonics

A mnemonic is a keyword that maps to a certain instruction. Mnemonics are generally matched
cap-insensitively. Some mnemonics allow different forms with optional or required size suffix
letters. If present, such a letter can be either a ‘W’ or a ‘D’ to indicate a word (16-bit) or dword
(32-bit) size.

11.6.2 Assembler operand types

Every explicit operand to an assembly language instruction is one of:

1. A register, which includes 8-bit, 16-bit, or 32-bit registers, most often a GPR (General
Purpose Register), part of a GPR, or a segment register

2. Memory, possibly addressed using none to two registers and/or a displacement, possibly
with a segment override. A memory operand generally has the address surrounded by
square brackets ‘[...] ’.

3. An immediate, possibly byte, word, or dword sized, where a byte may be sign-extended
for certain instructions

134

https://pushbx.org/ecm/doc/insref.htm
https://hg.pushbx.org/ecm/insref/

11.6.3 A quick overview of most 8086 instructions

ALU 2-operand

add, adc, sub, sbb, and, or, xor, cmp, test

ALU 1-operand

neg, not, inc, dec

Multiplication and division

mul, imul, div, idiv

Shifts and rotates

shl, shr, sar, rol, ror, rcl, rcr

Data movement

mov, xchg

Stack

push, pop, pushf, popf

Branch

jmp, jcc, loop, jcxz, call, int, retn, retf, iret

Flags

clc, stc, cmc, cld, std, cli, sti, lahf, sahf

String

lods*, stos*, scas*, cmps*, movs*

Port I/O

in, out

Special: Addresses and segments

lea, les, lds

Special: Prefixes

repe, repne, lock, es, ss, cs, ds

Special: BCD

daa, das, aaa, aas, aam, aad

Special

nop, xlatb, cbw, cwd, hlt

135

11.6.4 ALU 2-operand instructions

add

Add op1 + op2 and store in op1

adc

Add op1 + op2 + CF and store in op1

sub

Subtract op1 - op2 and store in op1

sbb

Subtract op1 - op2 - CF and store in op1

and

Bitwise AND both ops and store in op1

or

Bitwise OR both ops and store in op1

xor

Bitwise XOR both ops and store in op1

cmp

Calculate op1 - op2, affects only flags

test

Calculate bitwise AND, affects only flags

11.6.5 ALU 1-operand instructions

neg

Negate operand in two's complement

not

Bitwise NOT the operand

inc

Increment operand, preserves CF

dec

Decrement operand, preserves CF

11.6.6 Multiplication and division

mul

136

Multiply to doublewidth result

imul

Multiply signed to doublewidth result

div

Divide doublewidth number

idiv

Divide signed doublewidth number

11.6.7 Shifts and rotates

shl

Shift left

shr

Shift right, fill zeroes

sar

Shift arithmetic right, fill sign bit

rol

Rotate left

ror

Rotate right

rcl

Rotate with Carry left

rcr

Rotate with Carry right

11.6.8 Data movement

mov

Copy data value

xchg

Exchange two data values

11.6.9 Stack

push

Push from operand

137

pop

Pop into operand

pushf

Push flags

popf

Pop flags

11.6.10 Branch

jmp

Unconditional jump

jcc

Conditional short jump

loop

Decrement counter register and jump if nonzero

jcxz

Jump if counter register is zero

call

Push next instruction's address and jump to subroutine

int

Invoke interrupt handler

retn

Return near

retf

Return far

iret

Interrupt return

11.6.11 Flags

clc

Clear CF (NC)

stc

Set CF (CY)

138

cmc

Complement CF

cld

Clear DF (UP)

std

Set DF (DN)

cli

Clear IF (DI)

sti

Set IF (EI)

lahf

Load AH from flags

sahf

Store AH to flags

11.6.12 String

lods*

Load from string

stos*

Store to string

scas*

Compare accumulator register to string

cmps*

Compare two strings

movs*

Copy from string to string

11.6.13 Port I/O

in

Input from port

out

Output to port

139

11.6.14 Special: Addresses and segments

lea

Load Effective Address (calculate offset into register)

les

Load offset and Extra Segment from far pointer in memory

lds

Load offset and Data Segment from far pointer in memory

11.6.15 Special: Prefixes

repe

Repeat string instruction (while ZF set)

repne

Repeat string instruction (while ZF clear)

lock

Lock bus for atomic RMW

es

Override with Extra Segment

ss

Override with Stack Segment

cs

Override with Code Segment

ds

Override with Data Segment

11.6.16 Special: BCD

daa

Decimal Adjust after Addition

das

Decimal Adjust after Subtraction

aaa

ASCII Adjust after Addition

140

aas

ASCII Adjust after Subtraction

aam

ASCII Adjust after Multiply

aad

ASCII Adjust before Division

11.6.17 Special

nop

Do nothing

xlatb

Load byte from lookup table

cbw

Convert signed byte to word

cwd

Convert signed word to dword

hlt

Halt until an IRQ arrives

141

Section 12: Variable Reference

12.1 Registers
All debuggee registers can be accessed numerically:

• al , cl , dl , bl , ah , ch , dh , bh

• ax , cx , dx , bx , sp , bp , si , di

• eax , ecx , edx , ebx , esp , ebp , esi , edi

• es , cs , ss , ds , fs , gs

• fl , efl , ip , eip

Each 16-bit register can be used in a register pair, such as:

• dxax

• bxcx (used byL load program andWwrite program commands)

• sidi

• csip

12.2 MMX registers - MMxy
If MMX is available, the debuggee's MMX registers can be accessed as variables. However, as
the debugger only supports 32-bit numbers, only half of a 64-bit MMX register can be accessed.
The ‘x ’ is a digit from 0 to 7. The ‘y ’, if present, is one of the following letters:

L

Access only low 32 bits

H

Access only high 32 bits

Z

Read low 32 bits, write full 64 bits with zero extension to qword

S

Read low 32 bits, write full 64 bits with sign extension to qword

142

Letter absent

Same as letter Z

12.3 Options

12.3.1 DCO - Debugger Common Options

DCO1 (alias DCO) to DCO7. Dword. Writable.

12.3.2 DCS - Debugger Common Startup options

DCS1 (alias DCS) to DCS7. Dword. Read-only.

12.3.3 DIF - Debugger Internal Flags

DIF1 (alias DIF) to DIF7. Dword. Read-only.

12.3.4 DAO - Debugger Assembly Options

Dword. Writable.

12.3.5 DAS - Debugger Assembly Startup options

Dword. Read-only.

12.3.6 DPI - Debugger Parent Interrupt 22h

Alias DPRA. Dword. Read-only. Always a 86M segmented pointer. 0 if in TSR mode, or loaded
as a device driver, or in bootloaded mode.

12.3.7 DPR - Debugger PRocess

Alias DPSP. Word. Read-only. Always a 86M segment.

12.3.8 DPP - Debugger Parent Process

Alias DPARENT. Word. Read-only. Always a 86M segment. 0 if in TSR mode, or loaded as a
device driver, or in bootloaded mode.

12.3.9 DPS - Debugger Process Selector

0 while in Real or Virtual 8086 Mode, debugger process selector otherwise. (The process selector
addresses DebugX's PSP and DATA ENTRY section.) This variable does not exist on non-DPMI
lDebug builds.

12.3.10 DPSPSEL - Debugger PSP Segment/Selector

The debugger's PSP segment while in 86 Mode, a selector pointing to the same base while in
Protected Mode. This variable exists even on non-DPMI builds, where it is always the same as
DPSP.

143

12.4 Default step counts
PPC

Proceed command (section 10.33) default step count

TPC

Trace/Proceed command (section 10.49.1) default step count

TTC

Trace command (section 10.49) default step count

All of these are doublewords and default to 1. For the respective commands, these counts specify
the number of steps to take if none is specified explicitly. This includes when a command is run
by autorepeat, refer to section 10.1. If one of these is set to zero then it is an error to not specify
a count explicitly for the corresponding command.

12.5 Default lengths
DEFAULTDLEN

Word. Default length of D/DB/DW/DD commands in bytes (section 10.12). Only used if
DEFAULTDLINES is zero. Default is 128.

DEFAULTDLINES

Word. Default length of D/DB/DW/DD commands in lines (section 10.12). Not used if
zero. This is a word variable, but setting it to a value higher than 7FFFh is invalid. Default
is zero.

DEFAULTULEN

Word. Default length of U command in bytes (section 10.52). Only used if
DEFAULTULINES is zero. Default is 32.

DEFAULTULINES

Word. Default length of U command in lines (section 10.52). Not used if zero. This is a
word variable, but setting it to a value higher than 7FFFh is invalid. Default is zero.

12.6 Limits

12.6.1 RELIMIT - RE buffer execution command limit

Doubleword. Default is 256. If this many commands are executed from the RE buffer, the
execution is aborted and the command that called RE is continued.

12.6.2 RECOUNT - RE buffer execution command count

Doubleword. This is reset to zero when RE buffer execution starts. Each time a command is
executed from the RE buffer, this variable is incremented. If it reaches the value of RELIMIT,
RE buffer execution is aborted.

144

12.6.3 RCLIMIT - RC buffer execution command limit

Doubleword. Default is 4096. If this many commands are executed from the RC buffer, the
execution is aborted.

12.6.4 RCCOUNT - RC buffer execution command count

Doubleword. This is reset to zero when RC buffer execution starts. Each time a command is
executed from the RC buffer, this variable is incremented. If it reaches the value of RCLIMIT,
RC buffer execution is aborted.

12.7 Return Codes

12.7.1 RC - Return Code

Word. This holds the most recent command's return code. If the most recent command
succeeded, then this is zero.

12.7.2 ERC - Error Return Code

Word. This holds the most recent non-zero return code.

12.8 Addresses

12.8.1 A address (AAS:AAO)

AAS: word, AAO: doubleword. Default address for the assembler. Updated to point after each
assembled instruction.

12.8.2 D address (ADS:ADO)

Default address for memory dumping. Updated to point after each dumped memory content.

12.8.3 Address behind R disassembly (ABS:ABO)

12.8.4 U address (AUS:AUO)

Default address for the disassembler.

12.8.5 E address (AES:AEO)

Default address for memory entry.

12.8.6 DZ address (AZS:AZO)

Default address for DZ command, ASCIZ strings. Terminated by zero byte.

12.8.7 D$ address (ACS:ACO)

Default address for D$ command, CP/M strings. Terminated by dollar sign ‘$’.

12.8.8 D# address (APS:APO)

Default address for D# command, Pascal strings. Prefixed by length count byte.

145

12.8.9 DW# address (AWS:AWO)

Default address for DW# command. Prefixed by length count word.

12.8.10 DX address (AXO)

Default address for DX command. (Only included in DebugX.)

12.9 I/O configuration

12.9.1 IOR - I/O Rows

Byte. Default 1. Sets the number of rows of the terminal used by DOS or BIOS output. Setting
this to zero disables paging to the DOS or BIOS output. Setting this to 1 uses the automatic
selection. That means the BIOS Data Area byte at address 484h, plus one, is used. If using that
byte and it is zero, paging is disabled.

12.9.2 IOC - I/O Columns

Byte. Default 1. Sets the number of columns of the terminal used by BIOS input or DOS input
if getinput is enabled. Setting this to zero selects a default (80). Setting this to 1 uses the
automatic selection. That means the BIOS Data Area word at address 44Ah is used. This is used
by the line input handling if inputting from the BIOS terminal (int 16h, int 10h), or if inputting
from a DOS terminal when DCO flag 800h is set (eg by usingINSTALL GETINPUT). A value
between 2 and 39, inclusive, is not recommended.

12.9.3 IOCLINE - I/O Columns for splitting lines in getinput

Byte. Default 0. Sets the number of columns of the terminal at which to split overlong lines after
the user submits an input line with thegetinput line editor. If this is zero, splitting overlong
lines is disabled and it is assumed that the terminal will split lines as desired. Otherwise, overlong
lines (ie those extending past the IOC width) will be split to have no more than the amount of
bytes specified by the IOCLINE variable. Makes most sense to set this equal to IOC or DSC,
or else to zero. Any nonzero value is allowed.

12.9.4 IOS - I/O Circular Keypress Buffer Start

Word. Default 0 or 1Eh. Indicates where the ROM-BIOS's circular keypress buffer starts. Value
can be nonzero to force a particular offset in segment 40h. Value can be zero to force using the
value atword [40h:80h] , using an extension not available on all systems.

On startup the debugger checks whether the extension values are valid. If they are then the default
of the IOS variable is left as zero. Otherwise, the default is set to 1Eh, which is the default buffer
location.

This variable is used to check for Ctrl-C keypresses if the InDOS mode is on (either InDOS
flag set, DCO flag 8 set, or in bootloaded mode) and serial I/O is not in use and the flag DCO3
2000_0000h is set. Setting this variable nonzero and equal to IOE disables Ctrl-C checking.

Modifying this variable should only be done while it is not in use. That means using DOS for
input, using serial I/O for input, or clearing the DCO3 flag 2000_0000h. Modifying this variable
and the IOE variable should be done together, so that they are valid together when in use.

146

12.9.5 IOE - I/O Circular Keypress Buffer End

Word. Default 0 or 3Eh. Indicates where the ROM-BIOS's circular keypress buffer ends. Value
can be nonzero to force a particular offset in segment 40h. Value can be zero to force using the
value atword [40h:82h] , using an extension not available on all systems.

Refer to IOS description above.

12.9.6 IOL - I/O Amount of Script Levels to Cancel

Word. Default 255. Indicates how many levels of script files and RE buffer execution to cancel
when a Control-C input or critical DOS error is detected by the debugger. The effective value
will be incremented by one if IOF flag 1 is set and RE buffer execution is in progress.

Zero indicates to only cancel the current command. One indicates to cancel the current
command, plus the RE buffer execution if any, else up to one level of script file execution. Two
indicates to cancel two levels of execution: either the RE buffer execution and one level of script
file execution, or up to two levels of script file execution.

The debugger always cancels RE buffer execution first if it is in progress. Next, the innermost
script file execution is cancelled, if any.

12.9.7 IOF - I/O Flags

Word. Default 1. Flags for I/O handling. Currently defined:

1

Extra IOL level for RE buffer execution. If set, RE buffer execution being in progress
increments the effective value of the IOL variable.

12.10 I/O reading variables
IOK - Read a keypress

Returns a keypress scancode and/or ASCII text byte. The keypress is read from the current
debugger terminal. The terminal waits until a keypress arrives, if none is buffered yet. The
keypress is consumed. The low byte is an ASCII codepoint or zero. The high byte is an int
16h scancode or zero.

IOI - Check for input

Returns a nonzero value if input is available to the current debugger terminal. The input is
not consumed however. When using DOS, the value 0FFFFh indicates input is available.
When using int 16h, a nonzero return will consist of a scancode in the high byte and/or an
ASCII codepoint in the low byte. When using serial I/O a nonzero value will be an ASCII
codepoint.

12.11 Serial configuration

12.11.1 DSR - Debugger Serial Rows

Byte. Default 24. Sets the number of rows of the terminal connected via serial port. Setting this
to zero disables paging to the serial port. Setting this to 1 uses the IOR variable handling.

147

12.11.2 DSC - Debugger Serial Columns

Byte. Default 80. Sets the number of columns of the terminal connected via serial port. Setting
this to zero selects a default (80). Setting this to 1 uses the IOC variable handling. This is used
by the line input handling. A value between 2 and 39, inclusive, is not recommended.

12.11.3 DST - Debugger Serial Timeout

Byte. Default 15. This gives the number of seconds that the KEEP prompt upon serial connection
waits. Setting this to zero waits at the prompt forever.

12.11.4 DSF - Debugger Serial FIFO size

Byte. Default 16. This gives the size of the 16550A's built-in TX FIFO
to use. Set to 15 if using dosemu before revision gc7f5a828 2019-01-22, see
https://github.com/stsp/dosemu2/issues/748.

12.11.5 DSPVI - Debugger Serial Port Variable Interrupt number

Byte. Default 0Bh, corresponding to COM2. Use 0Ch for COM1. This specifies the interrupt
number to hook so as to be notified of serial events. The use of this variable occurs only when
connecting to serial I/O. The value at that point in time is cached for as long as the serial
connection is in use.

12.11.6 DSPVM - Debugger Serial Port Variable IRQ Mask

Word. Default 0000_1000b, corresponding to COM2. Use 0001_0000b for COM1. This
specifies the IRQ mask of which IRQs to enable. The low 8 bits correspond to IRQ #0 to #7 and
the high 8 bits correspond to IRQ #8 to #15. If any bit of the high 8 bits is set then generally the
bit 0100b should be set too, to enable the chained PIC. This circumstance is not automatically
detected. The use of this variable occurs only when connecting to serial I/O. The value at that
point in time is cached for as long as the serial connection is in use.

12.11.7 DSPVP - Debugger Serial Port Variable base Port

Word. Default 02F8h, corresponding to COM2. Use 03F8h for COM1. This specifies the I/O
port base to address the UART. The use of this variable occurs only when connecting to serial
I/O. The value at that point in time is cached for as long as the serial connection is in use.

12.11.8 DSPVD - Debugger Serial Port Variable Divisor latch

Word. Default 12, corresponding to 9600 baud. This specifies the DL value to set during
initialisation. The use of this variable occurs only when connecting to serial I/O.

12.11.9 DSPVS - Debugger Serial Port Variable Settings

Byte. Default 0000_0011b, corresponding to 8n1. (8n1 = 8 data bits, no parity, 1 stop bit.) This
specifies the settings to set up in LCR. The high bit (80h) generally must be clear. The use of
this variable occurs only when connecting to serial I/O.

12.11.10 DSPVF - Debugger Serial Port Variable FIFO select

Byte. Default 0. This specifies what to write to the FCR. The low 3 bits (07h) generally must

148

https://github.com/stsp/dosemu2/issues/748

be clear. The use of this variable occurs only when connecting to serial I/O. The value at that
point in time is cached for as long as the serial connection is in use.

12.12 Timer configuration
These variables control some details of the debugger's timers used for waiting in a few places.
The affected timers are:

• SLEEP command

• KEEP prompt timeout during serial I/O connection

• Serial output send wait if buffer full

Unaffected timers include:

• DCO3 flag 0400_0000h (delay for a tick before writing breakpoints), this only waits until
one tick change is observed

• Interrupt 8 Control pressed check, this does not count tick changes but rather counts
interrupt calls

12.12.1 GREPIDLE - getc repeat idle count

Byte. Default 0. If the getc function invokes the idle handling, it will repeatedly call the idle
function if this variable holds a nonzero value. The value specifies the amount of repetitions
past the first call. This variable is intended for debugging.

12.12.2 SREPIDLE - Sleep repeat idle count

Byte. Default 0. If the SLEEP command invokes the idle handling, it will repeatedly call the
idle function if this variable holds a nonzero value. The value specifies the amount of repetitions
past the first call. This variable is intended for debugging.

12.12.3 SMAXDELTA - Maximum encountered delta ticks

Word. This value is set anew whenever a wait handler has found a delta ticks larger than the
prior value of this variable. After any wait iteration the variable inevitably will be nonzero.

12.12.4 SDELTALIMIT - Delta ticks limit

Word. Default 5. This variable specifies the upper limit of the delta between tick low words
accepted as being accurate.

Note that at midnight the tick low word goes from 00AFh or 00B0h to 0000h. The delta appears
to be FF51h or FF50h ticks at that point. Therefore the limit should be set small enough that the
total wait time is not majorly skewed at midnight.

However, it is possible that the idle handling takes so long that more than one tick has actually
gone by until the wait handling is run again. For such system setups it can be desirable to set
the limit to more than 1.

A good compromise is to set the limit to between 1 and 6, inclusive. A limit of 6 ticks only
skews for 1/3 of a second at midnight.

149

12.13 _DEBUG1 variables
These variables are not supported by default. The build option _DEBUG1 must be enabled to
include them. The Test Counter variables work similarly to permanent breakpoint counters:

• If the counter AND-masked with 7FFFh is zero, it is at a terminal state.

• If the counter is not yet at a terminal state, it is decremented.

• If the counter is decremented to zero, it triggers.

• If the counter is decremented to 8000h or already at 8000h, it triggers.

The default values for all counters and addresses is zero.

12.13.1 TRx - Test Readmem variables

If a fault is injected into readmem, it returns the value given in TRV.

TRC - Test Readmem Counter

Word. Each of the TRC0 to TRCF counters gives one counter for readmem fault injection
testing.

TRA - Test Readmem Address

Doubleword. Each of the TRA0 to TRAF counters gives one linear address for readmem
fault injection testing.

TRV - Test Readmem Value

Byte. Default 0. If a readmem fault is injected, this byte value is returned by the read instead
of the actual memory content.

12.13.2 TWx - Test Writemem variables

If a fault is injected into writemem, it returns failure (CY).

TWC - Test Writemem Counter

Word. Each of the TWC0 to TWCF counters gives one counter for writemem fault injection
testing.

TWA - Test Writemem Address

Doubleword. Each of the TWA0 to TWAF counters gives one linear address for writemem
fault injection testing.

12.13.3 TLx - Test getLinear variables

If a fault is injected into getlinear, it returns failure (CY).

TLC - Test getLinear Counter

Word. Each of the TLC0 to TLCF counters gives one counter for getlinear fault injection
testing.

150

TLA - Test getLinear Address

Doubleword. Each of the TLA0 to TLAF counters gives one linear address for getlinear
fault injection testing.

12.13.4 TSx - Test getSegmented variables

If a fault is injected into getsegmented, it returns failure (CY).

TSC - Test getSegmented Counter

Word. Each of the TSC0 to TSCF counters gives one counter for getsegmented fault
injection testing.

TSA - Test getSegmented Address

Doubleword. Each of the TSA0 to TSAF counters gives one linear address for
getsegmented fault injection testing.

12.14 _DEBUG3 variables
These variables are not supported by default. The build option _DEBUG3 must be enabled to
include them. These variables are used to test the read-only masking. Read-only masking makes
it so that bits given in the mask are read-only. Bits that are clear in the mask are writable.

12.14.1 MT0 - Mask Test 0

Doubleword. Default 0. Mask AA55_AA55h.

12.14.2 MT1 - Mask Test 1

Doubleword. Default 0011_0022h. Mask 00FF_00FFh.

12.15 Y command variables
Y command variables can be used when the Y command (as application or bootloaded) has
been used to open a script file. YSx (Y Script) variables are generic and refer to whatever Y file
is opened. YBx (Y Bootloaded script) variables refer to opened Y files while bootloaded. YHx
(Y Handle script) variables refer to opened Y files as application.

12.15.1 YSF - Y Script Flags

Word. Partially read-write, partially read-only.

Flag 4000h controls whether script file input is displayed or not. Prepending an AT sign (@) to
a line that is read from a script file will hide the input of that line. Setting YSF flag 4000h will
hide all input lines instead. The effect is similar to prepending @ to every line.

YSF variables are only available while executing script files.

12.16 V variables - Variables with user-defined purpose
Doubleword. Default zero. V0 to VF or V00 to VFF each specify one variable. It is valid to refer
to any V variable using an index expression. Index expression means that the variable name (V)
is immediately followed by an opening parenthesis, followed by a numeric expression which

151

evaluates to a number below 100h.

12.17 PSP variables
All of these are read-only. All of them are zero if in bootloaded mode.

12.17.1 PSP - Process Segment Prefix

Word. Always a segment,

12.17.2 PPR - Process PaRent

Alias PARENT. Word. Always a segment.

12.17.3 PPI - Process Parent Interrupt 22h

Alias PRA. Dword. Always a 86 Mode segmented address.

12.17.4 PSPSEL - PSP segment or selector

Alias PSPS. Word. Segment or selector according to mode.

12.18 SR variables - Search Results

12.18.1 SRC - Search Result Count

Doubleword. Read only. Amount of matches found by last S command.

12.18.2 SRS - Search Result Segment

Word. Read only. SRS0 to SRSF each specify one variable. Search result segments of last S
command's matches.

12.18.3 SRO - Search Result Offset

Word or doubleword (DebugX). Read only. SRO0 to SROF each specify one variable. Search
result offsets of last S command's matches. It is valid to refer to any SRO variable using an index
expression. Index expression means that the variable name (SRO) is immediately followed by
an opening parenthesis, followed by a numeric expression which evaluates to a number below
10h.

12.19 Access variables
These variables can be left out of the build. The build option_MEMREF_AMOUNTmust be
enabled to include them.

12.19.1 READADR

Doubleword. Read only. READADR0 to READADR3 each specify one variable.
(Amount of READADR variables can be configured at build time with the option
_ACCESS_VARIABLES_AMOUNT, which defaults to 4.) Linear addresses of string, stack,
or explicit memory operand reads. Initialised by the R command. Unused variables are reset to
zero by the R command. It is valid to refer to any READADR variable using an index expression.
Index expression means that the variable name (READADR) is immediately followed by an
opening parenthesis, followed by a numeric expression which evaluates to a number below 4.

152

12.19.2 READLEN

Doubleword. Read only. READLEN0 to READLEN3 each specify one variable. Length of
string, stack, or explicit memory operand reads. Initialised by the R command. Unused variables
are reset to zero by the R command. It is valid to refer to any READLEN variable using an index
expression.

12.19.3 WRITADR

Doubleword. Read only. WRITADR0 to WRITADR3 each specify one variable. Linear
addresses of string, stack, or explicit memory operand writes. Initialised by the R command.
Unused variables are reset to zero by the R command. It is valid to refer to any WRITADR
variable using an index expression.

12.19.4 WRITLEN

Doubleword. Read only. WRITLEN0 to WRITLEN3 each specify one variable. Length of
string, stack, or explicit memory operand writes. Initialised by the R command. Unused variables
are reset to zero by the R command. It is valid to refer to any WRITLEN variable using an index
expression.

12.20 Machine type variables
MMT - Maximum Machine Type encountered

Set whenever the disassembler encounters an instruction requiring a machine type that is
higher than this variable's current value. Writable.

MACHX86 - Machine type for assembler and disassembler

Current machine type to use for assembler and disassembler. Read-only, use M commands
to modify.

MACHX87 - Coprocessor encoded machine type

Contains valid argument to M command: C0h if no coprocessor, 0Ch if coprocessor
matching machine, C2h if machine is a 386 with a 287 coprocessor. Read-only, use M
commands to modify.

12.21 LFSR variables
These variables provide access to a simple LFSR (Linear Feedback Shift Register). The default
taps are chosen so that a full-range 32-bit LFSR is in use. That means there are 4 giga binary
steps, minus one, and all possible 32-bit values are in use except for the all zeros value. A step
of the LFSR is done by shifting the old value to the right once. If the bit shifted out is a 1, then
the new value is obtained by applying the LFSR taps as a XOR mask to the shift result. If the
bit shifted out is a 0, then the new value is simply the shift result.

LFSR - Forward LFSR variable

Whenever this variable is read, it first executes an LFSR step from the variable's prior
value. What is actually read is the new value after the step. This variable is initialised to
the constant 2 on startup of the debugger. That means that with the default taps, the first
read will return 1, the second 8020_0003h, etc.

153

LFSRTAP - Taps to use for the LFSR

This variable determines the tap bits to use for the LFSR. The default is 8020_0003h,
leading to a full-range 32-bit LFSR. Different values may be chosen. The highest bit of the
taps value determines how wide the forward LFSR is.

RLFSR - Reverse LFSR variable

Similar to the forward LFSR variable, except it runs backwards. This also uses the
LFSRTAP variable, however the taps are shifted to the left once, and the least-significant
bit is set to 1. In addition, the RLFSRTOP variable is used to get the check mask, by
shifting left the constant 1 by RLFSRTOP binary digits places. The check mask is used to
determine whether to XOR mask with the taps or not. The check mask also indicates what
bit to clear in the taps in order to create the reverse taps.

RLFSRTOP - Reverse LFSR top bit count

This variable indicates what bit to check in order to determine whether the reverse LFSR
should tap or not. It also indicates what bit to clear in the creation of the reverse taps. Its
default is 1Fh (31), which lends itself to a 32-bit taps value. Setting this to a number higher
than 1Fh (31) is invalid, and may be subject to behaviour as yet undetermined.

12.22 RIxxy - Real 86 Mode Interrupt vectors
These read-only variables provide access to the 86 Mode interrupt vectors in a more accessible
format.

The xx must be a single or two hexadecimal digits, or an index expression in parentheses which
evaluates to a number below 256.

The y must be one of the following letters:

• P - Read vector as a 16:16 segmented pointer (dword), ready for use as a pointer-type
expression. (Actual use as a pointer-type expression still requires aPTRtype keyword.)

• S - Read vector's segment. (Word.)

• O - Read vector's offset. (Word.)

• L - Read vector as a linear address. (3byte.)

12.23 FL.xF - Flag status
These read-only variables support reading the flag status of certain flags.

The x must be one letter to form one of the following names:

CF

Carry Flag

PF

Parity Flag

154

AF

Auxiliary carry Flag

ZF

Zero Flag

SF

Sign Flag

IF

Interrupt Flag

DF

Direction Flag

OF

Overflow Flag

Note that the FL.xF flags are read-only. To write to a flag with the R command, it is valid to
specify just xF as the variable name, but this is not valid within expressions to read the flag
status. (It cannot be supported in expressions because some of the flag names are all hexadecimal
digits, such as CF.)

12.24 HHRESULT - H command result
Dword. Result of most recent H command. (If H twofold operation is used then the addition
result is stored in the variable.)

12.25 DARESULT - D.A command result
Word. Result of most recent D.A command. This is set to 0FFFFh by a failed D.A command
and to the allocated selector by a successful D.A command. This variable is only present in
lDebugX.

12.26 XARESULT - XA command result
Word. Result of most recent XA command. This is set to 0FFFFh by a failed XA command
and to the allocated handle by a successful XA command. This variable is only present if the
debugger was built with the_EMSoption or the x.eld has been installed.

12.27 INT8CTRL - Interrupt 8 Control pressed detection time
Word. Number of ticks to wait with Control pressed until breaking into the debugger. This
variable is only used if the interrupt 8 handler is installed. If the handler detects that Control
is pressed continuously for this length of time while not in the debugger then the handler will
break into the debugger. Default is set up for about 5 seconds (5 times 18). Set to 0 to disable
Control pressed detection.

155

12.28 Device mode variables
DEVICEHEADER

Dword. Read-only. Gives segmented 16:16 address of device header installed by the
debugger. Zero if not in device mode.

DEVICESIZE

Word. Read-only. Gives amount of paragraphs allocated to device. Zero if not in device
mode.

12.29 QQCODE - Q command termination return code
Byte. Default 0. This variable is used to set the return code used by the debugger to terminate
itself with interrupt 21h service 4Ch. This only happens if the debugger is in application mode
and not in TSR mode, or a device mode debugger has been attached to a process.

12.30 TERMCODE - Debuggee termination return code
Word. Debugger sets this value when it is entered from a debuggee having terminated. The value
is what interrupt 21h service 4Dh returned.

12.31 DDTEXTAND - Data dump text AND mask
The variableDDTEXTANDis used as a mask to modify the text code of a data dump before
display. It defaults to 0FFh. Setting this to 7Fh will mimic MS-DOS Debug's display of text in
its data dump, masking off the high bit. In this case theTOPsetting of the D command has no
effect.

12.32 AMIS variables

12.32.1 TRYAMISNUM

The TRYAMISNUM variable is a writable byte variable. It defaults to 0. Its content is tried first
when searching a free multiplex number. After that the debugger currently will search starting
from number 0 up to 255.

12.32.2 AMISNUM

The AMISNUM variable is a read-only byte variable. It contains the actually used multiplex
number while the DIF4 flag 8 is set. Otherwise its content is not used and is considered stale.

12.32.3 TRYDEBUGNUM

The TRYDEBUGNUM variable is a writable byte variable. It defaults to 255. It is similar to
TRYAMISNUM, however its content is tried first to find another debugger instance. After that
the debugger currently will search starting from number 255 down to 0. Unused if it matches
the debugger's own currently installed AMIS handler's multiplex number. This is used by the
debugger to find the following services provided by another debugger instance:

• Update IISP Header

• Install DPMI entrypoint hook

156

• Install fault areas

None of these services are detected and used if DCO3 flag 800_0000h is set. (In the past this
flag was wrongly documented as applying to the Update IISP Header service only.)

TRYDEBUGNUM is as well used by Extensions for lDebug to find the following services:

• AMISMSG (one or several listing hints in ELD linker or hint.eld)

• AMISOTH (ldmemoth.eld, instnoth.eld, hintoth.eld)

• AMISCMD (inject.eld)

The DCO3 option flags do not affect the ELD use of AMIS services.

12.32.4 DEBUGFUNC

The DEBUGFUNC variable is a read-only word variable. It defaults to 0. When the Update IISP
Header function of the debugger is called and a search for another debugger happens, then this
variable receives a 0 if no other debugger is found. It receives a value with the low byte equal
to 30h if another debugger was found. (The low byte is set up as the AMIS private function
number of the Update IISP Header service.) The high byte is equal to the detected multiplex
number then.

12.33 COUNT - List length count
Dword. Any successfully parsed COUNT or S command will write the length of the pattern it
counted, given in bytes, to this variable.

12.34 RHCOUNT - Count of RH buffer entries
Word. Reads as the current amount of buffered RH mode entries. May be corrupted if RH mode
is not currently enabled.

12.35 ELDAMOUNT - Amount of installed ELDs
Word. Reads as the amount of residently installed Extensions for lDebug. This variable is only
supported if the amount.eld has been installed. Due to the ELD architecture, this variable will
always read as above-or-equal 2.

12.36 CIP - Current CS's EIP or IP
In Protected Mode in lDebugX, this variable is either a word or dword. Which one it is depends
on the D bit of the descriptor corresponding to the current CS selector. In Real or Virtual 86 Mode
this variable is always a word. In lDebug without DPMI support this variable is also always a
word.

12.37 CSP - Current SS's ESP or SP
In Protected Mode in lDebugX, this variable is either a word or dword. Which one it is depends
on the B bit of the descriptor corresponding to the current SS selector. In Real or Virtual 86 Mode
this variable is always a word. In lDebug without DPMI support this variable is also always a
word.

157

12.38 Boot loading variables

12.38.1 BOOTUNITFLxx

The boot unit flags are 256 partially writable byte variables. Every flag byte corresponds to an
int 13h unit. The following flags are defined:

• 01h Force CHS access, do not detect LBA support with 13.41

• 02h Force LBA access, do not detect LBA support with 13.41

• 04h Force use of BPB's CHS geometry, do not detect with 13.08

The flag 01h takes precedence over 02h if both are set.

These flags match the low flags of the lDOS iniload query patch site. All the flags are by default
pre-initialised to zero, but this can be overridden in two ways.

The source macro file debug.mac contains the following equates and defines:

lufForceCHS:equ 1
lufForceLBA:equ 2
lufForceGeometry:equ 4
luf_mask_writable equ lufForceCHS | lufForceLBA | lufForceGeometry

numdef LUF_DEFAULT_DISKETTE, 0
numdef LUF_DEFAULT_HARDDISK, 0

The first define is the default value used for all diskette units, that is unit numbers below 80h.
The second define is the default value used for hard disk units, that is unit numbers above-or-
equal 80h.

Further, as documented for lDOS boot, the query patch site of a bootable lDebug executable can
have its default changed during the build or can be patched later. If the highest bit of the active
patch site byte (80h) is set then the flags are used to initialise the boot unit flags of the loaded
from unit.

The low two flags exactly match the lDebug boot unit flags. The flag 04h differs a little, to lDOS
iniload it means to pass along the geometry either detected by or hardcoded in the prior loader.
To lDebug, the flag means to probe the boot sector (presumed to be a diskette or superdiskette
with a FAT FS BPB). In both cases, an interrupt 13h service 08h call is avoided.

158

https://pushbx.org/ecm/doc/ldosboot.htm#protocol-sector-iniload-patch

Section 13: Interrupt Reference

13.1 Mandatory interrupt hooks
• Interrupt 0 - Divide error

• Interrupt 1 - Trace

• Interrupt 3 - Breakpoint

• Interrupt 6 - Invalid opcode

• Interrupt 18h - Diskless boot hook

• Interrupt 19h - Boot load

These interrupts are always hooked by the debugger. For the non-_DEBUG builds they are
hooked during initialisation and the debugger attempts to unhook them when quitting. The
highest 8 bits of the dword variable DCO4 control whether they are unhooked only if reachable
(bits in DCO4 zero), or forcibly so if not reachable (bits in DCO4 ones). If not forcibly
unhooking and an interrupt handler is not reachable then the Q command fails.

For DDebug, these interrupts are hooked within therun function and unhooked before therun
function returns. This unhooking in DDebug is always forcible; that is, if not reachable then the
interrupts are unhooked by simply updating the IVT entries with whatever handlers are stored
as the next vectors in DDebug's entrypoints.

CDebug can run in debuggable mode (like DDebug) or with debuggable mode disabled. If the
cmd3 loop detects a change in the DCO6 flag 100h then it will toggle debuggable mode to match
the flag. This will involve hooking the mandatory handlers or unhooking them (forcibly).

As a special exception, if the debugger detects that it is running on an HP 95LX, then interrupt
6 is never hooked. This supports the different use of this software interrupt by the software or
firmware on this type of device.

13.2 Serial interrupt
This interrupt hook is optional. Setting the DCO flag 4000h (enable serial I/O) instructs the
debugger to set up this interrupt hook. Clearing the flag or using theQ command instructs
the debugger to unhook its handler. The DCO4 flag 1_0000h controls whether the interrupt
unhooking is forcible (flag set) or not (flag clear).

The exact interrupt number used as serial interrupt depends on the DSPVI variable at the point
in time at which serial I/O is enabled. The default is interrupt 0Bh, corresponding to COM2.

159

13.3 Interrupt 2Fh - Multiplex (DPMI entrypoint)
This interrupt is only hooked by DebugX. This interrupt hook is optional. Setting the DCO4 flag
2 instructs the debugger to set up this interrupt hook. The debugger tries to hook this interrupt if
it runs application code in Real or Virtual 86 Mode. Clearing the flag, entering Protected Mode,
or using theQcommand instructs the debugger to unhook its handler. The DCO4 flag 2_0000h
controls whether the interrupt unhooking is forcible (flag set) or not (flag clear).

This interrupt is hooked to intercept calls to function 1687h, used to detect the DPMI entrypoint.
DebugX attempts to hook this service to return its own entrypoint to the caller. The hook may
fail if the DPMI host handles interrupt 2Fh calls before chaining to the 86 Mode handler chain.
(MS Windows 4.x and older dosemu are reported to do this.)

13.4 Interrupt 8 - Timer
This interrupt hook is optional. Setting the DCO4 flag 4 instructs the debugger to set up this
interrupt hook. Clearing the flag or using theQcommand instructs the debugger to unhook its
handler. The DCO4 flag 4_0000h controls whether the interrupt unhooking is forcible (flag set)
or not (flag clear).

This interrupt is used to detect the double Control-C via serial I/O condition. If the serial I/O
handler of the debugger receives two Control-C keypresses while the debugger is busy running
an application then the interrupt 8 hook will interrupt the run.

This interrupt is also used to detect the Control pressed for 5 seconds condition. Similarly to the
serial I/O double Control-C condition, this will make the debugger interrupt the current run.

13.5 Interrupt 2Dh - Alternate Multiplex Interrupt
This interrupt hook is optional. Setting the DCO4 flag 8 or running anINSTALL AMIS
command instructs the debugger to set up this interrupt hook. Clearing the flag or running
UNINSTALL AMISor using theQcommand instructs the debugger to unhook its handler. The
DCO4 flag 8_0000h controls whether the interrupt unhooking is forcible (flag set) or not (flag
clear).

This interrupt allows other programs to detect the debugger in the AMIS interface. The vendor
string is ‘ecm’ and the product string ‘lDebug ’. The description string contains the same
display name and version as the command line help. There are two real uses of this. First, the
AMIS function 4, which will return the list of interrupt entrypoints of the debugger. Second,
lDebug's private AMIS functions 30h, 31h, 33h, 40h, 41h, 42h, and 43h. They are described in
the next sections.

This interrupt hook only succeeds if the current handler is valid. That is, an offset not equal to
FFFFh and a segment not equal to zero. Another condition is that the debugger needs to detect
an unused AMIS multiplex number to allocate. This is done automatically when hooking the
interrupt. If either condition fails then a message is displayed and the debugger clears the DCO4
flag 8 on its own.

The TRYAMISNUM variable is a writable byte variable. It defaults to 0. Its content is tried first
when searching a free multiplex number. After that the debugger currently will search starting
from number 0 up to 255.

The AMISNUM variable is a read-only byte variable. It contains the actually used multiplex

160

number while the DIF4 flag 8 is set. Otherwise its content is not used and is considered stale.

Note that the AMIS interface is not AMIS-compliant in a few ways:

• The uninstall function returns 00h (not implemented).

• If lDDebug or lCDebug are in debuggable mode, their mandatory handlers will still be
listed in the AMIS function 4 interrupt list despite not being installed. (Their downlink
fields will contain FFFFh:FFFFh then.)

• If the build option _CATCHSYSREQ is enabled then the SysReq hook will not be listed
for AMIS function 5. The interrupt 8 Control pressed hook is also not listed.

13.5.1 AMIS private function 30h - Update IISP Header

This function is provided for use by our programs that use AMIS multiplexers and interrupt
handler entrypoints with IISP headers. All TSRs (including RxANSI, lClock, SEEKEXT,
KEEPHOOK, FDAPM, FreeDOS SHARE) and SHUFHOOK use this function. (The debugger
itself also uses this function, if it is provided by another resident debugger.)

lDebug - Update IISP Header
INP: al = 30h
 ds:si -> source IISP header (or pseudo header)
 es:di -> destination IISP header
OUT: al = FFh to indicate suppported,
 si and di both incremented by 6
 destination's ieNext field updated from source
 al != FFh if not supported,
 si and di unchanged
CHG: -
REM: This function is intended to aid in debugging
 handler re-ordering, removal, or insertion.
 The 32-bit far pointer needs to be updated
 as atomically as possible to avoid using
 an incorrect pointer.
 Test case: Run a program such as our TSRs'
 uninstaller or SHUFHOOK and step through it
 with "tp fffff" when operating on something
 crucial such as interrupt 21h. Without this
 function the machine will crash!
 To enable this function to be called, first run
 the command "r dco4 or= 8", or "INSTALL AMIS"
 (install our AMIS multiplexer handler).
 Other workaround: Use SILENT for TP and disable
 DCO3 flag 4000_0000 (do not call int 21.0B to
 check for Ctrl-C status).
 Yet another workaround: Set flag DCO 8 (enable
 fake InDOS mode, avoid calling int 21h).
REM: The source may be a pseudo IISP header. In this
 case the ieEntry field should hold 0FEEBh
 (jmp short $) and the ieSignature field
 should indicate the source, eg "VT" for the IVT
 or "NH" for inserting a New Handler.

161

13.5.2 AMIS private function 31h - Install DPMI entrypoint hook

This function is for use by lDDebugX (or lCDebugX). It instructs lDebugX (or lCDebugX) to
install its DPMI entrypoint hook. It is called by the debuggable debugger right before it tries to
install its own hook. Non-zero return values in AL indicate the function is supported. A return
value of 0FFh in AL indicates success. Other non-zero return values indicate that no hook
occurred. Non-DPMI builds of lDebug return zero. This function should be called only while
the InDOS flag is zero.

lDebugX - Install DPMI hook
INP: al = 31h
OUT: al = FFh if installed
 al = FEh..F0h if not installed but call is supported
 al = 00h if not supported
CHG: -
STT: not in DOS

13.5.3 AMIS private function 32h - Reserved for lDebugX

lDebugX - Reserved
INP: al = 32h

13.5.4 AMIS private function 33h - Install fault areas

This function is by default provided by lDebugX (including the variants lCDebugX and
lDDebugX) and is for use by lDDebugX as well as lCDebugX (in debuggable mode). It is called
when the debuggable debugger is instructed to INSTALL AREAS.

lDebugX - Install fault areas
INP: al = 33h
 dx:bx -> fault area structure of client
OUT: al = FFh if installed
 al = FEh..01h if not installed but call is supported
 al = 00h if not supported
CHG: al, bx, cx, dx, si, di, es, ds
REM: The area structure is defined in the lDebug sources'
 debug.mac file. The first 32 bytes of the structure
 start with a signature word, which is equal to the
 word value CBF9h (encoding the instruction sequence
 of stc \ retf) if the structure is not currently
 installed into any debugger. The remainder of the
 32 bytes, as well as the details of how the first
 two bytes are used otherwise, are private to the
 debugger that provides this service (the server).
 The area structure may be far-called in 86 Mode. The
 only currently defined function (in al) for this call
 is function 00h, which attempts to uninstall the area
 structure which is being called. It is valid for
 either the server or the client to uninstall an
 area structure if they so wish.
 The fields of the structure behind the first 32 bytes
 point to a number of sub-structures and area function

162

 lists and area lists. All of these structures are
 to be accessed using the same segment as the main
 area structure. They contain linear start and linear
 end addresses, which the client sets up before it
 tries to install the areas. The linear start address
 is also assumed to point to the segment base address
 which is used as the reference for the area functions
 and areas. (They do not have to match the offset part
 actually used to run the code, but the lists must be
 based on the linear start address.)

13.5.5 AMIS private function 40h - Display message

This function is provided by an ELD hooking into the debugger's AMIS handler. The ELD
is installed by running ‘ext amismsg.eld install ’. The function provides a way to
display a single message, of up to 384 Bytes, to the debugger terminal. (Older revisions only
allowed a message size up to 128 Bytes.) The message is displayed by the ELD's inject handler,
before the next debugger command is read in thecmd3 command loop.

lDebug - AMIS message ELD - Display message to debugger terminal
INP: al = 40h
 dx:bx -> ASCIZ message, will be truncated if > 384 Bytes
OUT: al = 00h if not supported
 al = FFh if supported and full message stored
 (older revisions unconditionally returned al = FFh)
 al = FEh if supported and truncated message stored
 (truncation may occur at 383 or 384 Bytes of non-NUL text)

Note that the address indx:bx is a segmented 86 Mode address as the AMIS interface operates
in Real/Virtual 86 Mode. However,dx was chosen to pass the segment to simplify calling the
interface from Protected Mode. PM code must ensure to fill the register with a segment value,
not a Protected Mode selector.

This function is used by the ELD linker or hint.eld to pass along offset hints to TracList, refer
to section 7.3.1.

13.5.6 AMIS private function 41h - Query message status

This function is provided by the same ELD as function 40h. It allows to query whether a stored
messsage has been displayed yet.

lDebug - AMIS message ELD - Query message status
INP: al = 41h
OUT: al = 00h if not supported
 al = 01h if supported and no message is stored
 al = 02h if supported and message is still stored (not yet displayed)

13.5.7 AMIS private function 42h - Get other link data

This function is provided by an ELD hooking into the debugger's AMIS handler. The ELD is
installed by running ‘ext amisoth.eld install ’. The function exports the debugger's
link data for use by "other link" ELDs running in another debugger instance.

163

INP: al = 42h
OUT: al = 00h if not supported
 al = FFh if supported
 bx (86M segment) => link tables
 cx (selector) => link tables
 dx (86M segment) => PSP
 si (selector) => PSP
 di -> link info in link tables section

If the debugger is without DPMI support or if not in PM, the selector values may be uninitialised
or stale.

13.5.8 AMIS private function 43h - Inject a debugger command

This function is provided by an ELD hooking into the debugger's AMIS handler. The
ELD is installed by running ‘ext amiscmd.eld install ’. The function allows to send
commands to be injected into the command loop of the debugger.

Multiple commands can be injected back to back. They will be injected in the order of the calls
to this function. However, the buffer is of a fixed size. (Currently, 1024 Bytes.) If the buffer is
full, an error will be returned to the caller.

INP: al = 43h
 cx = flags, all reserved for now (must pass as 0)
 dx:bx -> message in byte-counted string,
 1 byte length (<= 254)
 N bytes text, length matching the value of length byte
 1 byte Carriage Return (= 13)
OUT: al = 00h if not supported
 al = 01h if supported, but buffer is full
 al = 02h if supported, but unknown bit set in cx
 al = FFh if successfully stored in buffer

164

Section 14: Service Reference

These are the services called by the debugger.

14.1 Interrupt 10h
Used for output while InDOS, DCO flag 8 set, bootloaded, when ‘INSTALL BIOSOUTPUT’
was used (DCO6 flag 200h set), or when DCO6 flag 100_0000h set.

Function 02h

Set cursor position (only used if highlighting)

Function 03h

Get cursor position (only used if highlighting, indicates to highlight to int 10h if supported)

Function 06h

Scroll up window (used if CLEAR command done while writing to int 10h)

Function 08h

Get video attribute (only used if highlighting)

Function 09h

Set video attribute (only used if highlighting)

Function 0Eh

Teletype output

Function 0Fh

Get video mode and page

14.2 Interrupt 16h
Used for input while InDOS, DCO flag 8 set, bootloaded, or DCO6 flag 100_0000h is set.

Function 00h

Read keypress (wait until keypress available, consume it)

Function 01h

Read keypress (return if no keypress available, retain it if any)

14.3 Interrupt 2Fh

165

Function 1261h

PTS-DOS: Get first UMCB

Function 1680h

Idle (Release timeslice to multitasker)

Function 1687h

Get DPMI entrypoint (used and hooked by lDebugX)

Function 4300h, 4310h

XMS detection and get entrypoint

Function 4A06h

RPL adjust base memory size (called by booted debugger if RPL signature present)

14.4 Interrupt 12h
Called by booted debugger to determine base memory size.

14.5 Protected Mode Interrupt 31h
Used by lDebugX while in Protected Mode.

Function 0000h

Allocate LDT descriptor

Function 0001h

Free LDT descriptor

Function 0002h

Get selector from segment

Function 0003h

Get next selector increment value

Function 0006h

Get segment base

Function 0007h

Set segment base

Function 0008h

Set segment limit

Function 0009h

Set descriptor access rights

166

Function 000Ah

Create alias descriptor

Function 000Bh

Get descriptor

Function 000Ch

Set descriptor

Function 0200h

Get 86M interrupt vector

Function 0201h

Set 86M interrupt vector

Function 0202h

Get PM exception vector

Function 0203h

Set PM exception vector

Function 0204h

Get PM interrupt vector

Function 0205h

Set PM interrupt vector

Function 0300h

Call Real/Virtual 86 Mode interrupt

Function 0301h

Call Real/Virtual 86 Mode far function

Function 0305h

Get raw mode switch save state addresses

Function 0306h

Get raw mode switch addresses

Function 0900h

Disable Virtual Interrupt Flag

Function 0901h

Enable Virtual Interrupt Flag

167

Function 0902h

Get Virtual Interrupt Flag

14.6 Protected Mode Interrupt 2Fh
Function 1680h

Idle (Release timeslice to multitasker)

Function 168Ah

Determine whether DOS extender is available.

14.7 Protected Mode Interrupt 21h
Function 7305h

Read/write sectors from/to DOS drive. Used to implement L and W command.

Function 4Ch

Terminate DPMI client and process

14.8 Protected Mode Interrupt 25h
Read sectors from DOS drive. Used to implement L command.

14.9 Protected Mode Interrupt 26h
Write sectors to DOS drive. Used to implement W command.

14.10 Interrupt E6h
Function bx = 0, ax = -1

Used by booted debugger to implement BOOT QUIT command when running in dosemu2.

Function ax = 9

Called early in debugger init when running in dosemu2. This call instructs the VM to start
its -input injection. It is normally only needed when booting the debugger.

14.11 Interrupt 15h
Function 87h

Used by DX command to read memory.

Function 5301h, 530Eh, 5307h

Used by booted debugger to implement BOOT QUIT command when running in qemu.

Function 4DD4h, bx = 0

Detect HP 95LX

168

14.12 Interrupt 13h
Used by the booted debugger to load scripts, ELDs, or kernel executables.

Function 00h

Reset disk system

Function 02h

Read sector with CHS addressing

Function 03h

Write sector with CHS addressing

Function 08h

Query CHS geometry

Function 41h

Detect LBA extensions support

Function 42h

Read sector with LBA

Function 43h

Write sector with LBA

14.13 Interrupt 19h
Boot load. Used if booting the debugger fails.

14.14 Interrupt 2Dh
Used to access Alternate Multiplex Interrupt Specification TSRs. Can be used while bootloaded
too.

Function 00h

Installation check. Determines whether an AMIS number is in use.

Function 04h

Determine chained interrupts. Determines interrupt entrypoints.

AMIS private functions 30h, 31h, 33h, 40h, 41h, 42h, 43h of lDebug (refer to section 13.5)

14.15 Interrupt 25h
Read sectors from DOS drive. Used to implement L command. Only used if the debugger is
loaded as a DOS application or DOS device driver.

169

14.16 Interrupt 26h
Write sectors to DOS drive. Used to implement W command. Only used if the debugger is loaded
as a DOS application or DOS device driver.

14.17 Interrupt 21h
DOS services. Only used while not InDOS. (Only used if the debugger is loaded as a DOS
application or DOS device driver.)

Function 08h

Get standard input keypress

Function 0Ah

Line buffered standard input

Function 0Bh

Check standard input available / Check Control-C

Function 19h

Get default drive

Function 1Ah

Set DTA (used by list.eld)

Function 25h

Set interrupt vector

Function 29h

Parse filename

Function 2Fh

Get DTA (used by list.eld and dtadisp.eld)

Function 3000h

Get DOS version

Function 3306h

Get true DOS version

Function 34h

Get InDOS flag address

Function 35h

Get interrupt vector

170

Function 3700h

Get switch character

Function 3Ch

Create file

Function 3Dh

Open file

Function 3Eh

Close file

Function 3Fh

Read from file

Function 40h

Write to file (Used to write to stdout too)

Function 41h

Delete file

Function 42h

Seek in file

Function 45h

Duplicate file handle

Function 4400h

Used in initialisation to determine whether handle is to a device

Function 440Dh

Used to lock and unlock drives by W command

Function 48h

Allocate memory

Function 4Ah

Resize memory

Function 4B01h

Load executable and return to debugger

Function 4Ch

Terminate process

171

Function 4Dh

Get process return code

Function 4Eh

SFN Find First (used by list.eld)

Function 4Fh

SFN Find Next (used by list.eld)

Function 50h

Set PSP

Function 51h

Get PSP

Function 52h

Get List of Lists

Function 55h

Create child PSP

Function 58h

Get or set memory allocation strategy and UMB link status

Function 5D06h

Get DOS SDA address (used to switch active PSP)

Function 6Ch

Extended open/create

Function 716Ch

Extended open/create with LFN

Function 714Eh

LFN Find First (used by list.eld)

Function 714Fh

LFN Find Next (used by list.eld)

Function 71A0h

Get LFN volume information

Function 71A1h

LFN Find Close (used by list.eld)

172

Function 7305h

Read/write sectors from/to DOS drive. Used to implement L and W command.

14.18 Interrupt 67h
EMS services. Used by X commands.

173

Section 15: Extensions for lDebug reference

Extensions for lDebug (ELDs) can be loaded using the EXT command (section 10.19). Some
ELDs operate in a transient way only; some memory is allocated to them when they load and
they free this memory again after their run is done. Other ELDs can be installed residently and
will reserve some of their memory as used beyond their initial run.

15.1 LDMEM - Dump lDebug memory use.
Displays information on memory use of the debugger. Can be installed residently
with INSTALL parameter to provide theLDMEMcommand, and uninstalled with an
LDMEM UNINSTALLcommand.

The residentLDMEMcommand as well as the transient ELD provide a number of keywords to
control the output:

MEM

Display memory areas of the debugger, with their segments, selectors (in Protected Mode
only), and size in Bytes in hexadecimal as well as in KiB.

SEG

Display segments and (in Protected Mode) selectors in a small overview, without size
information on the sections.

HISTORY

Display history utilisation, including how many history entries are used, how many history
buffer bytes are used and how many there are in total, and the average size per history entry.

STACK

Display stack utilisation, including the total stack size and how many bytes appear to be
used (by a heuristic scan).

ELD

Display ELD code instances and data blocks use. Each code instance is displayed either
with a code instance name or the indicator ‘Free space ’. For each code instance, the
code start, stop, and size is displayed in hexadecimal, as well as the size in decimal
Bytes/KiB. For code instances marked as free, the code instance name is listed behind the
size. This may be stale. For code instances which have an ELD data block allocated to
them, the data start, stop, and size is displayed on a second line. Finally, if the ELD code
buffer or the ELD data buffer have trailing free space, it is displayed as ‘Free space ’
at the end.

174

ELDVAR

Display ELD variables. The ext variables format, structure size, amount used, and amount
total are displayed. For each allocated variable, its flags, maximum array index, name,
and entrypoint into the ELD are displayed. The entrypoint display includes the ELD code
instance base address and the ELD code instance name.

COMMANDHANDLER

Display ELD command and preprocess handlers. Each entrypoint is displayed with its
offset, the offset of its ELD code instance, and the ELD code instance name.

AMISHANDLER

Display ELD AMIS handlers. This is alike the command handlers. (Note that AMIS
handlers are always called in Real/Virtual 86 Mode.)

ASMHANDLER

Display ELD assembly handlers. This is alike the command handlers.

PUTSHANDLER

Display ELD puts-related handlers. This is alike the command handlers.

INJECTHANDLER

Display ELD inject handlers. Unlike the command handlers, inject handlers do not point to
a chain of handlers. Instead, there is only ever none or one single inject handler installed.
That means the display of inject handlers is not very useful for the LDMEM ELD. However,
the LDMEMOTH ELD may make this display more useful.

Some keywords are expanded to a list of other keywords:

ALL

All output.

ALLNOSEG

All output, except for the SEG output.

ELDALL

All ELD-related output.

ELDHANDLERS

All ELD handlers output.

The keyword ‘HELP’ is handled specifically to display an online help page when specified to
the transient ELD. It is not valid for the resident ELD's command, however.

If no keywords are specified, the default keyword is assumed as ‘ALLNOSEG’.

175

15.2 HISTORY - Command history utility.
Lists the command history of the debugger, or clears it. Can be installed residently
with INSTALL parameter to provide theHISTORY command, and uninstalled with a
HISTORY UNINSTALLcommand.

Provides two subcommands:

SHOW

Dump all history entries, in chronological order.

CLEAR

Clear the history, deleting all existing entries.

If the transient ELD is run without a keyword, then the online help is displayed.

15.3 DI - Dump Interrupt vectors.
Re-creation of the DI and DIL commands of the debugger. This allows to use the DI commands
when the debugger is built with the_INT=0 build option. Can be installed residently with
INSTALL parameter to provide theDI command, and uninstalled with aDI UNINSTALL
command.

Refer to section 10.13.

15.4 DM - Dump MCBs.
Re-creation of the DM command of the debugger. This allows to use the DM command when
the debugger is built with the_MCB=0build option. Can be installed residently withINSTALL
parameter to provide theDMcommand, and uninstalled with aDM UNINSTALLcommand.

Refer to section 10.14.

The DM ELD by default includes support to dump the position of each MCB as Bytes or KiB.
Specifying the keywordPOSITION as the very first parameter will enable this.

The DM ELD by default includes support to end the listing past a certain segment address.
Specifying the specifierLIMIT= followed by a numeric expression enables this. The specifier
must be either early (afterPOSITION if present, beforeSKIPSD) or after the explicit start
MCB.

The DM ELD by default includes support to dump SD (System Data) sub-MCBs. They are
displayed indented by one column. Specifying the keywordSKIPSD as a parameter will skip
the SD sub-MCB listing. (This keyword must be after thePOSITION keyword or after the early
LIMIT= specifier, if present.)

As a special addition, the DM command implemented by the ELD additionally allows the
following parameters:

HEADER

Display a header line first, indicating the meaning of the columns.

176

TABLE

Similar to HEADER, but expand the columns to a table format for easier readability.

TheHEADERor TABLEparameter must be afterPOSITION, an earlyLIMIT= , or SKIPSD
if present, but before any explicit start MCB segment expression.

15.5 RN - Display FPU registers.
Re-creation of the RN command of the debugger. This allows to use the RN command when
the debugger is built with the_RN=0 build option (as is the default now). Can be installed
residently withINSTALL parameter to provide theRN command, and uninstalled with an
RN UNINSTALLcommand.

Refer to section 10.40.

15.6 RM - Display MMX registers.
Re-creation of the RM command of the debugger. This allows to use the RM command when
the debugger is built with the_RM=0build option (as is the default now). Can be installed
residently withINSTALL parameter to provide theRMcommand, and uninstalled with an
RM UNINSTALLcommand.

Refer to section 10.39.

15.7 X - EMS commands.
Re-creation of the X commands of the debugger. This allows to use the X commands when
the debugger is built with the_EMS=0build option (as is the default now). Can be installed
residently withINSTALL parameter to provide theX commands, and uninstalled with an
X UNINSTALLcommand.

Refer to section 10.57.

15.8 DX - Dump Extended memory.
Re-creation of the DX command of the debugger. This allows to use the DX command when
the debugger is built with the_DX=0 build option (which is the default as of release 9). Can
be installed residently withINSTALL parameter to provide theDXcommand, and uninstalled
with anDX UNINSTALLcommand. This ELD requires a 386+ machine.

15.9 INSTNOUN - Operate on INSTALL flag nouns.
Displays information on install flags of the debugger. These are the nouns accepted by the
INSTALL andUNINSTALLcommands. Can be installed residently withINSTALL parameter
to provide theINSTNOUNcommand, and uninstalled with anINSTNOUN UNINSTALL
command.

The operation that can be selected is:

QUIET

Flag for subsequent operation to not display any output.

177

SET

Enable/install a flag.

CLEAR

Disable/uninstall a flag.

TOGGLE

Toggle a flag.

After the operation, the name of one or more flags must be listed.

If no operation is specified, all flags are listed. The format is as follows for the first name of a
flag:

• Flag address in debugger entry section. ‘0000 ’ if a special flag.

• Flag mask, or the address of the special flag entrypoint. A mask with more than one bit set
indicates a reverse mask.

• A single symbol representing the state of the flag: ‘+’ if enabled, ‘- ’ if disabled, ‘?’ if a
special flag.

• The name of the flag.

• The description of the flag.

For subsequent alias names of a flag, only the name is listed.

15.10 RECLAIM - Reclaim unused ELD memory.
Transient utility to reclaim unused space in the ELD code buffer and the ELD data blocks buffer.
This is no longer needed because the debugger now includes the implementation of this tool and
automatically reclaims memory before loading an ELD.

This ELD may still be needed in conjunction with ELDCOMP to reset the ELD buffers the way
ELDCOMP expects them after a run.

15.11 ELDCOMP - Compare ELDs with differing linker options.
A tool to compare an ELD with its XLD counterpart. XLD is the filename extension typically
used to hold a build of an ELD with some linker optimisations. ELDCOMP allows to compare
the two, helping to identify and locate relocation errors in the ELD to be tested.

Before running ELDCOMP, you may want toinstall nofreeoneshot and
uninstall paging to avoid interfering with the operation of ELDCOMP. In addition, it
may be useful to run the debugger with the /X switch and particularly the /Y switch to increase
the size of the ELD buffers that may be needed by ELDCOMP.

Up to 8 commands are passed to ELDCOMP, separated by semicolons. The first and fifth
command are typically EXT commands. The first one loads an XLD, whereas the fifth loads the
corresponding ELD in the same way. The second and sixth command may invoke a residently

178

installed XLD/ELD, and are typically the same. The third and seventh command are used to
uninstall a residently installed XLD/ELD, if any, and are typically the same as well. The fourth
and eighth command should beext reclaim.eld .

The output of the first pass of ELDCOMP is as follows:

• Output of running the eight commands

• A line with the data length, data hash, code length, code hash of the first run

• A line with the lengths and hashes of the second run

• The line "Data length mismatch" if applicable

• The line "Data hash mismatch" if applicable

• The line "Code length mismatch" if applicable

• The line "Code hash mismatch" if applicable

If any of the mismatch messages were displayed, ELDCOMP will attempt to run its second pass.
If the ELD data space doesn't suffice for running the second pass, the message "Not enough
ELD data space left!" is displayed. You may want to retry with a debugger running with the /Y
switch.

The output of the second pass of ELDCOMP starts out the same as the first pass's. However,
the hashes are expected not to equal those of the first pass because the ELD data block lives at
another offset. The second pass will additionally display one or both of the following parts:

• "Comparing data", followed by the left, right, and length numbers. The output of a C
command follows, with the in-ELD offsets prepended and appended.

• "Comparing code", in the same way.

The offsets displayed at the beginning and end of each line of the C commands are offsets within
the ELD data block or the ELD code instance. They can be referenced in the ELD's listing file
to find the source of the mismatch.

15.12 AFORMAT - Format assembly output.

Once installed, this ELD hooks into the assembler. After a line is submitted to the assembler,
the AFORMAT ELD will dump in hexadecimal the bytes written by the assembler.

15.13 AMISMSG - Display message received on AMIS interface.

This ELD hooks into the debugger's AMIS interface. It provides the AMIS functions 40h and
41h to send messages to the debugger terminal. (Refer to section 13.5.5 and section 13.5.6.) A
message may consist of up to 127 bytes of text. The message is displayed either on the next
command being read in thecmd3 command input loop using a command injection handler, or
when the command ‘AMISMSG DISPLAY’ is run.

This ELD is intended to be used in the outer debugger to receive the TracList offset hints sent
by hint.eld or by the ELD linker of an ELD being loaded in the inner debugger.

179

15.14 AMOUNT - Provide ELDAMOUNT variable.

This ELD once installed provides theELDAMOUNTvariable. This variable can be read to obtain
the amount of installed ELDs.

15.15 BASES - Convert between different numeric bases.

A converter for different numeric bases. Can accept a numeric parameter to be evaluated by
the expression evaluator. Using aBASE=specifier or the name of a base (HEXADECIMAL,
DECIMAL, BINARY, OCTAL) the input number may be specified as a literal, which accepts
unsigned numbers of up to 64 bits. Output is in the four known bases, formatted to resemble
the expression evaluator's literal input format. Output can be in one arbitrary base using a
trailingOUTPUTkeyword, followed byBASE=, GROUP=, andWIDTH=specifiers. The BASES
ELD can be installed residently using anINSTALL parameter to provide the residentBASES
command.

15.16 CO - Copy debugger terminal output to a file.

Installs theCOPYOUTPUTcommands using theINSTALL parameter. Once a file is specified
with ‘COPYOUTPUT NAME filename’ the debugger opens the file to append to it. While
not InDOS all output to the debugger terminal is written to the opened file.

Several commands are provided by this ELD:

COPYOUTPUT NAME filename

Set filename and open/create file to append. An existing file is opened for writing, not
truncated.

COPYOUTPUT ON

Enable writing to an opened file. (Default.)

COPYOUTPUT OFF

Disable writing to an opened file.

COPYOUTPUT TOGGLE

Toggle the ON / OFF status.

COPYOUTPUT GETINPUTMODE [ALL|FULLONLY|TOGGLE]

Display or change getinput mode of the COPYOUTPUT ELD.

COPYOUTPUT TRUNCATE

Truncate the currently opened file to zero bytes.

COPYOUTPUT CLOSE

Close the currently opened file.

180

COPYOUTPUT UNINSTALL

Close a file if any is opened, and uninstall the ELD.

The getinput mode determines how getinput output is written to the COPYOUTPUT file:

ALL

All getinput output is written, including Carriage Returns and blanks and printable text that
is used to reposition the cursor or redraw the visible text.

FULLONLY (default)

Only the prompt and the final accepted input line are written. Repositioning and redrawing
output is filtered out and not written.

15.17 CONFIG - Access debugger config paths.
Allows to show or set the debugger config paths. This ELD operates as a transient ELD only.
Run as:

SHOW CONFIG

Show debugger config path.

SET CONFIG path

Set debugger config path.

SHOW SCRIPTS

Show debugger scripts path.

SET SCRIPTS path

Set debugger scripts path.

15.18 DTADISP - Displays the current DOS Disk Transfer Address.
This ELD runs as a transient ELD only. It is only valid to run this ELD when DOS is available.

15.19 IFEXT - Conditionally run a command if an ELD is installed.
Allows to run another command conditionally, using a command of the form
IF [NOT] EXT "extension name" THEN command . May be used as a transient
ELD or installed residently using anINSTALL command to provide theIF EXT commands.

The extension name to provide must match an ELD code instance name as displayed by
a command like ‘ext ldmem.eld eld ’. An ELD is considered installed if at least one
non-free ELD code instance matches the specified name. The name is matched insensitive to
capitalisation. The name must be specified with quote marks if it contains a blank. Names must
not be longer than 8 bytes.

For transient use, the ‘IF [NOT] EXT ’ construct follows after the ELD filename. For instance,
‘ext ifext.eld if ext "amiscmd" then r ’ will run an R command if the AMIS
command ELD is installed.

181

15.20 KDISPLAY - Displays the current K/N command buffers'
content.
This ELD runs as a transient ELD only.

15.21 LIST - List ELD/SLD files, description lines, sizes, help.
Displays the description lines for ELD files or SLD files that are specified with a single pathname
pattern. The pattern may contain wildcards in the last component. After the pathname, several
keywords may be specified:

• VERBOSEto display technical details,

• HELPto display the help,

• SFN to force use of the DOS SFN find interface instead of trying the DOS LFN find
interface,

• LIB to recurse into library ELDs displaying the same infos for every embedded ELD.

• /name (where the name is a pattern that can contain question marks or a trailing asterisk)
to filter library ELDs which match the name pattern. This allows to inspect one or a few
of the embedded ELDs without listing all embedded ELDs.

15.22 PRINTF - Print formatted output.
Allows to print formatted output. Can be installed residently or used as a transient tool. The first
parameter is a quoted string. Subsequent parameters provide data to format.

Supported escape codes:

• \b Backslash (8)

• \t Tab (9)

• \n Line Feed (10). Usually wanted in a sequence \r\n

• \r Carriage Return (13)

• \s Blank (32)

• \f Form Feed (12)

• \xNN Byte value in one or two hexadecimal digits

Supported format codes:

• %% Literal percent sign

• %X, %x Hexadecimal number (Capitalised, uncapitalised)

• %U Unsigned number

• %D, %I Signed number

182

• %C Text byte

• %S Text string

• %B Format as Byte/kB/KiB size

Text strings are provided in one of three forms:

• START list-parameter END (refer to section 8.5)

• RANGE range-parameter

• ASCIZ range-parameter

15.23 SET - Access environment variables.
Allows to access the environment block to read or write variables. Can install a residentSET
command using anINSTALL parameter, or run transiently using aRUNparameter.

Running the command, the following parameters are accepted:

(None)

Display all variables in order of their occurrence.

variable

Display the content of the given variable, or a message indicating the variable is not set.

variable=

Delete a variable if it exists.

variable=content

Set or modify a variable, if it fits in the environment block.

/E variable=command

Set a variable to the first line of output displayed by the command. The output is not written
to the debugger terminal.

/E /xxx variable=command

Set a variable to a line of output displayed by the command. The ‘xxx ’ indicates which
line to choose; ‘/0 ’ chooses the first nonempty line, ‘/1 ’ the second line, etc.

15.24 USEPARAT - Display disassembly separators.
Installs an output hook into the debugger to display an underscore line after disassembling near
or far jumps or near, far, or interrupt return instructions. An equals sign line is displayed after
disassembly of a DOS termination call, if it is detected.

Once installed, the command ‘USEPARAT WIDTH expression ’ is provided. It sets the
width of the lines to display, between 0 and #80. The default is #39.

183

15.25 VARIABLE - Expand environment variables.
Installs a command preprocessor hook to expand ‘%VARIABLE%’ specifications in commands.
This ELD can be used as a transient ELD or as a resident ELD. Once installed, variable uses
in commands are expanded. Note that the command to uninstall the resident variable.eld is
‘VARIABLES UNINSTALL’, not matching the filename of the ELD.

To use the ELD transiently, a parameter reading either RUN or DISPLAY is to be used. RUN
will run the subsequent command with variable uses expanded. DISPLAY will instead display
the subsequent text with variable uses expanded.

15.26 WITHHDR - Run commands with temporary DCO flags set.
Installs a prefix command calledWITH. This can be used asWITH HEADERor
WITH TRAILERto temporarily set DCO flags to enable D command headers or trailers. The
ELD can also be used asWITH NODUMPto temporarily set a DCO flag to disable the S
command data dump from after S command search results. Command injection is used to reset
the flags afterwards.

15.27 AMISCMD - Run commands received on AMIS interface.
This ELD hooks into the debugger's AMIS interface. It provides the AMIS function 43h to inject
commands into the debugger. (Refer to section 13.5.8.) This requires this debugger to have run
‘ install amis ’.

In another debugger instance, inject.eld can be used to inject commands into this debugger.

15.28 AMISOTH - Provide other link info on AMIS interface.
This ELD hooks into the debugger's AMIS interface. It provides the AMIS function 42h to
export the debugger's link info as an "other link". (Refer to section 13.5.7.) This requires this
debugger to have run ‘install amis ’.

In another debugger instance, "other link" ELDs (ldmemoth.eld and instnoth.eld) can be used
to access this debugger's data.

15.29 AMITSRS - List currently installed AMIS multiplexers.
Port of Ralf Brown's AMIS TSR lister. This ELD can be installed residently or used transiently.
If the parameter is not equal toINSTALL , then the following parameters are accepted:

VERBOSE

Display all information for each multiplexer.

MPX

Include the line that indicates the multiplex number.

HOTKEYS

KEYS

Include the display of installed hotkeys.

184

INT

INTLIST

INTERRUPTS

Include the interrupt list display.

VERSION

Include the line that indicates the version number.

ENTRY

Include the line that indicates the private entrypoint.

If no parameters are specified, then only one line is displayed per multiplexer, listing the vendor
and product signatures and the description line of each multiplexer.

15.30 BOOTDIR - List directory entries.
List directory entries in bootloaded mode. This ELD runs as a transient ELD only. The first
parameter must be a pathname pattern. The last component may include wildcards. The available
wildcards are:

Question mark ‘?’

Matches one byte as a wildcard.

Asterisk ‘* ’

Matches any number of bytes as a wildcard, up to the end of the current SFN field.

After the pathname pattern, any number of keywords may follow:

WIDE

Display in wide mode, up to 5 names per line.

SORT

Sort filenames.

DATE

Must be specified along with SORT. Sort by date.

SIZE

Must be specified along with SORT. Sort by size.

REVERSE

Reverse the sort order.

DIRFIRST

Sort directories first before any files.

185

When sorting, the ELD will detect a buffer for storing the filenames while scanning the directory
in the first pass, for sorting the entries. If this buffer overflows, the ELD cannot succeed.

If the date of a directory entry is zero, which would be decoded as "1980-00-00", the date field
is blanked out.

15.31 DBITMAP - Dump 8-bit-wide graphics from memory.
This ELD can be installed residently or used transiently.

When installed residently, threeDBITMAPcommands are available in addition to the usual
UNINSTALL command:

• SET0 followed by a list, to set the default string for 0 bits. The list must not exceed 10
bytes.

• SET1 followed by a list, to set the default string for 1 bits. The list must not exceed 10
bytes.

• OptionalRUNkeyword, followed by a range, or by anINTERNALkeyword followed by a
word, or by aSTRkeyword followed by a list. (This command can be used transiently as
well.)

After theRUNkeyword optionally there may be aSET0 or SET1 keyword followed by a list
that ends with anENDkeyword. After any number of such constructs a range orINTERNAL
keyword orSTRkeyword must follow. These constructs allow to override the strings for a 0 bit
or for a 1 bit for the duration of a single command.

The three choices forRUNcommands are handled differently:

Range

Display data in range, 8 bits per line, given length (default: 8 bytes). Addresses are
displayed before each data dump line.

INTERNAL followed by a word

Display 8 bytes from the internal font, 8 bits per line, offset by the specified word. To
address a specific codepoint, multiply its numeric value by 8. Addresses are displayed
before each data dump line.

STRfollowed by a list

Display a graphical string from the internal font. No addresses are displayed.

TheSTRmode allows processing escape codes indicated by a backslash. The following escapes
are defined:

‘ \\ ’

Write a single backslash.

‘ \M ’

Write the next codepoint but with the bits mirrored (left and right are swapped).

186

‘ \H ’

Write a blank, whose width is specified by the next alphanumeric. ‘\H8 ’ is the same as a
regular blank, ‘\H4 ’ produces a half-width blank.

Examples:

-f 100 l 8 FF
-f 108 l 8 00
-ext dbitmap.eld run 100
2B03:0100 ********
2B03:0101 ********
2B03:0102 ********
2B03:0103 ********
2B03:0104 ********
2B03:0105 ********
2B03:0106 ********
2B03:0107 ********
-ext dbitmap.eld run 108
2B03:0108
2B03:0109
2B03:010A
2B03:010B
2B03:010C
2B03:010D
2B03:010E
2B03:010F
-ext dbitmap.eld run set1 '#' end 100 l 2
2B03:0100 ########
2B03:0101 ########
-ext dbitmap.eld run internal #'L' * 8
0436:9226 ..**....
0436:9227 ..**....
0436:9228 ..**....
0436:9229 ..**....
0436:922A ..**....
0436:922B ..**....
0436:922C ..******
0436:922D
-ext dbitmap.eld run str "\MLDOS"
....**...*****....*****...*****.
....**...**..**..**...**.**...**
....**...**...**.**...**..**....
....**...**...**.**...**...***..
....**...**...**.**...**.....**.
....**...**..**..**...**.**...**
******...*****....*****...*****.
................................
-

187

15.32 DOSCD - Change DOS current directory or drive.
This ELD can only be used transiently. DOS must be available to run this ELD.

If only a drive letter and colon are specified, then the current drive is changed to the indicated
drive.

If the first parameter is a keyword ‘BOTH’ then the current drive is changed to the indicated drive
and the current directory on that drive is changed to the indicated path. It is an error to specify
the keyword ‘BOTH’ if no drive letter is given.

If the first parameter is a keyword ‘IFBOTH’ then if a drive letter is specified, the current drive
is changed to the indicated drive. Then the current directory is changed to the indicated path.

The current drive is changed by using interrupt 21h function 0Eh, and checked for success
by using interrupt 21h function 19h. The current directory is changed by using interrupt 21h
function 3Bh.

15.33 DOSDIR - List directory entries.
List directory entries using DOS. This ELD runs as a transient ELD only. DOS must be available
to run this ELD.

The first parameter must be a pathname pattern. The last component may include wildcards.
The available wildcards are:

Question mark ‘?’

Matches one byte as a wildcard.

Asterisk ‘* ’

Matches any number of bytes as a wildcard, up to the end of the current SFN field.
Semantics may differ for LFNs.

After the pathname pattern, any number of keywords may follow:

SFN

Use DOS SFN search, even if LFN search would be available.

WIDE

Display in wide mode, up to 5 names (SFNs) per line.

SORT

Sort filenames.

SORTSFN

Sort filenames, but sort by SFNs rather than LFNs.

SORTLFN

Sort filenames, but sort by LFNs rather than SFNs.

188

DATE

Must be specified along with SORT. Sort by date.

SIZE

Must be specified along with SORT. Sort by size.

REVERSE

Reverse the sort order.

DIRFIRST

Sort directories first before any files.

When sorting, the ELD will detect a buffer for storing the filenames while scanning the directory
in the first pass, for sorting the entries. If this buffer overflows, the ELD cannot succeed.

If the date of a directory entry is zero, which would be decoded as "1980-00-00", the date field
is blanked out.

15.34 DOSDRIVE - Get or set a DOS drive.
This ELD runs as a transient ELD only. DOS must be available to run this ELD.

If no parameters are specified, gets the current DOS drive and displays it as the drive letter
followed by a colon.

If the parameter ‘GET’ is specified without a trailing pathname, act as if no parameters are
specified.

If the parameter ‘GET’ is specified with a trailing pathname, parses the pathname and displays
its drive letter if any is specified, or else the current drive.

If the parameter ‘SET’ is specified with a trailing pathname, then the pathname must contain a
drive letter. The current drive is changed to the specified drive.

If the parameters ‘SET QUIET’ are specified, then the trailing pathname and its drive letter
specification are optional. If no such drive specification is included, the command silently does
nothing.

15.35 DOSPWD - Display DOS current directory.
This ELD runs as a transient ELD only. DOS must be available to run this ELD.

If no parameter is specified, displays the current directory on the current drive.

If a parameter ‘NUMBER’ is specified, then a trailing plain number parameter is parsed from an
expression. This number must be below 32. It specifies the drive of which to get the current
directory.

Otherwise the parameter must be a drive letter followed by a colon. It specifies the drive of
which to get the current directory.

189

15.36 EXTNAME - Guess EXT and Y command filename
extensions.
Installs residently to guess EXT and Y command filename extensions. Install using the
INSTALL keyword.

Once installed, running an EXT or Y command without a filename extension will guess the
filename extension. The EXT command will guess the extension as ‘.ELD ’ first and ‘.XLD ’
second. The Y command will guess the extension as ‘.SLD ’.

The following commands are additionally provided:

EXTNAME WARNEXT

Display status of warning on unknown filename extension.

EXTNAME WARNEXT ON

Enable warning on unknown filename extension.

EXTNAME WARNEXT OFF

Disable warning on unknown filename extension.

EXTNAME WARNEXT TOGGLE

Toggle warning on unknown filename extension.

EXTNAME GUESSEXT

Display status of guessing filename extension.

EXTNAME GUESSEXT ON

Enable guessing filename extension.

EXTNAME GUESSEXT OFF

Disable guessing filename extension.

EXTNAME GUESSEXT TOGGLE

Toggle guessing filename extension.

15.37 INJECT - Inject commands into other debugger instance.
Injects commands into other debugger instance using the other's AMIS function 43h (refer to
section 13.5.8). (This function is provided by the AMISCMD ELD, refer to section 15.27.)

15.38 INSTNOTH - INSTNOUN which operates on other link
debugger.
INSTNOUN variant (refer to section 15.9) that operates on another debugger instance. This
requires the other instance to have installed the AMISOTH ELD (refer to section 15.28) and its
AMIS handler to provide the AMIS function 42h (refer to section 13.5.7).

190

15.39 LDMEMOTH - LDMEM which operates on other link
debugger.

LDMEM variant (refer to section 15.1) that operates on another debugger instance. This requires
the other instance to have installed the AMISOTH ELD (refer to section 15.28) and its AMIS
handler to provide the AMIS function 42h (refer to section 13.5.7).

15.40 LINFO - Display status of L command.

Installs residently to display status of program-loading L command. Running a program-loading
L command will then display some information on the file being loaded and the process that
was created.

Additionally the following commands are provided:

LINFO FILE

Display the program load filename. This is what an L command will show before the
command is processed.

LINFO FILE QUIET

As LINFO FILE, but display nothing if no program load filename specified.

LINFO PROBE

Probe the program load file and current PSP. This is most of what a successful L command
will show after the command is processed.

LINFO PROBE QUIET

As LINFO PROBE, but display nothing if no program load filename specified.

15.41 PATH - Path search for K/N commands.

Provides path search and filename extension guessing for the K and N commands. This ELD
can be installed residently or used transiently.

If used transiently, the first parameter must be the command letter ‘K’ or ‘ N’. The path search
is done on the program load filename specified to the given command, and then the command
is run with the resulting pathname. A warning is displayed if the WHILE buffer or DOS are
not available, as path search will not happen in this case. An error is displayed if the expanded
pathname doesn't fit into theline_in buffer.

If used residently, the K or N commands are intercepted in the command handler. The path
search is done on the program load filename, and if found the command is modified to receive
the resulting pathname.No warningis displayed if the WHILE buffer or DOS are not available,
but path search will not happen in this case. An error is displayed if the expanded pathname
doesn't fit into theline_in buffer.

The following commands are additionally provided when installed residently:

191

PATH WARNEXT

Display status of warning on unknown filename extension.

PATH WARNEXT ON

Enable warning on unknown filename extension.

PATH WARNEXT OFF

Disable warning on unknown filename extension.

PATH WARNEXT TOGGLE

Toggle warning on unknown filename extension.

PATH GUESSEXT

Display status of guessing filename extension.

PATH GUESSEXT ON

Enable guessing filename extension.

PATH GUESSEXT OFF

Disable guessing filename extension.

PATH GUESSEXT TOGGLE

Toggle guessing filename extension.

PATH PATHSEARCH

Display status of searching path.

PATH PATHSEARCH ON

Enable searching path.

PATH PATHSEARCH OFF

Disable searching path.

PATH PATHSEARCH TOGGLE

Toggle searching path.

15.42 EXTLIB - Library of ELDs.
Library of ELDs to be used instead of single files. This library contains most other ELDs. To
load an embedded ELD, specify its filename or ELD code instance name as a parameter to the
EXTLIB ELD. The name may be specified with an ‘.ELD ’ or ‘ .XLD ’ filename extension, which
is ignored. All trailing parameters after the name are passed to the embedded ELD.

If no ELD name or the name ‘HELP’ is specified, the EXTLIB ELD's help is displayed instead.
If after the ‘HELP’ keyword one more keyword follows, the short or long list of embedded ELDs
is displayed along with the EXTLIB help:

192

WIDE

Display ELD filenames in a wide format, up to 8 ELDs per line.

DESCRIBE

Display ELD filenames along with the corresponding ELD description lines, one ELD per
line.

15.43 EXTPAK - Compressed library of ELDs.
This is used exactly the same as extlib.eld (section 15.42) except that the embedded ELDs are
compressed (using heatshrink or lzexedat -4 compression). This means that operations like the
HELP DESCRIBElist or scanning for an ELD code instance name may take longer than with
the uncompressed extlib.eld.

15.44 QUIT - Quit the machine.
Quits the machine. Can be installed residently or used transiently. When run with a parameter
‘RUN’ then this ELD will attempt to quit (shut down) the currently running machine or VM.
When ‘install quickrun ’ has been used, running this ELD without a parameter will also
attempt to quit the machine.

15.45 DOSSEEK - Get or set the DOS 32-bit seek of a process
handle.
This ELD only operates transiently, and requires DOS to be available.

The first parameter is eitherGETor SET. The second parameter is an expression that evaluates
to a process handle number. This number must refer to a process handle that is opened in the
current debuggee process.

For getting the seek, after the process handle there may follow theVAR index specification. If
it is given, then the specified V variable (section 12.16) is set to the current 32-bit seek. Further,
aQUIET keyword may follow to suppress the output of the command. If not both aVARand a
QUIET keyword are specified, then the output will be like the following example:

-ext dosseek.eld get 5
Process handle 5 current seek is 0000_1400 #5120 5.0 KiB

For setting the seek, after the process handle another keyword must follow:

ABS

Set absolute seek.

CUR

Set signed offset from current seek.

EOF

Set signed offset from EOF.

After the keyword, an expression follows which gives the 32-bit offset to seek to.

193

15.46 ALIAS - Define aliases.

Define simple aliases that are replaced in a command preprocess handler. This ELD must be
installed residently.

To add an alias, run as ‘ALIAS ADD aliasname expansion ’.

To delete an alias, run as ‘ALIAS DEL aliasname ’.

To list aliases, run as ‘ALIAS LIST ’ or ‘ ALIAS LIST aliasname ’.

15.47 DPB - Display a DOS drive's DPB.

Display a DOS drive's DPB (MS-DOS v4 to v6 layout, optionally with FreeDOS, MS-DOS
v7.10, or EDR-DOS FAT32 extensions). Can be installed residently withINSTALL parameter
to provide theDPBcommand, and uninstalled with aDPB UNINSTALLcommand.

An optional parameter specifies the drive to access. It defaults to zero. A drive letter may be
specified with a trailing colon. Otherwise, a number is parsed. Zero means to access the DOS
current drive. The number one corresponds to drive A:, two to drive B:, and so on. The DPB is
accessed using interrupt 21h function 32h, which requires DOS to be available. Enhanced DR-
DOS may return DPBs for FAT32 drives on this function whereas FreeDOS and MS-DOS 7.10
may refuse to do so.

Instead of the drive parameter, the keywordADDRESSmay be specified. It must be followed
by an address parameter. This address specifies where to read the DPB from. This address uses
a selector in Protected Mode, except when the parameter is prepended by a dollar sign.

Instead of the drive parameter, the keywordLIST may be specified. After this keyword, either
the keywordSKIP or the keywordDRIVE has to follow.

After the keywordsLIST SKIP a number is parsed. The list of DPBs is detected from the
DOS List of Lists and a number of DPBs are skipped in the chain until reaching the target. The
number specified after the keyword indicates how many DPBs to skip.

After the keywordsLIST DRIVE a drive is parsed. This may be either a number or a drive
letter. The list of DPBs is detected from the DOS List of Lists and the DPBs are scanned for
one matching the specified drive in its first field.

Between theLIST keyword and the next keyword, an address for the DOS List of Lists may
be inserted. This starts with anAT keyword. Then an address parameter is parsed. This address
parameter is always a 86 Mode segmented address, even in Protected Mode. The address
parameter's segment defaults to the DOS data segment as obtained from reading the 86 Mode
interrupt 31h vector's segment. The address specifies where to find the DOS List of Lists.

Before theLIST or ADDRESSkeywords or the drive specifier, the keywordEXTENDED=
may be specified to display an EDPB. It must be followed by one of the known DOS version
keywords. These are:FREEDOS, MSDOS, orEDRDOS. The DOS keyword indicates what format
of EDPB to display.

Before theEXTENDED=keyword, the keywordONLYmay be specified. If specified, only the

194

EDPB extended fields are displayed, skipping the base DPB.

As an example, a drive with a typical 1440 KiB diskette file system will display as follows:

-ext dpb.eld A:
DOS function 32h call returned al=00h.
DOS function returned 86 Mode address=00D9:1E40
Drive 00: 00 0
DeviceUnit 01: 00 0
BytesPerSector 02: 0200 512
HighestSectorInCluster 04: 00 0
SectorsPerClusterShift 05: 00 0
ReservedSectors 06: 0001 1
AmountFATs 08: 02 2
AmountRootEntries 09: 00E0 224
DataStart 0B: 0021 33
MaximumCluster 0D: 0B20 2848
SectorsPerFAT 0F: 0009 9
RootStart 11: 0013 19
DeviceHeader 13: 0070_0610 7341584
MediaID 17: F0 240
Accessed 18: 00 0
Next 19: 00D9_1E7D 14229117
FreeClusterNext 1D: 0000 0
AmountFreeClusters 1F: FFFF 65535
-

Note that at least the FreeDOS kernel always resets theFreeClusterNext and
AmountFreeClusters fields whenever the DPB is obtained using interrupt 21h function
32h.

Invalid drives (including file system redirector drives) will result in a nonzero return in AL:

-ext dpb.eld Z:
DOS function 32h call returned al=FFh.
-

15.48 RDumpIdx - Dump text bytes pointed to by DS:SI and ES:DI
in R register dump.

Once installed, this ELD hooks into the debugger's R command register dump. If the dump is in
16-bit mode and not configured for 40-column display, and lDebugX is not in Protected Mode,
this ELD will take effect. It will display a trailer to the first line of the register dump, listing
what text bytes are found at the addresses indicated by DS:SI and ES:DI.

Example:

AX=5A20 BX=0000 CX=051C DX=0000 SP=FFFE BP=0000 SI=0082 DI=0000 SI='s' DI=top
DS=5A21 ES=5A21 SS=5A21 CS=5A21 IP=04D0 NV UP EI PL ZR NA PE NC
5A21:04D0 AC lodsb

195

15.49 RDumpStr - Dump text pointed to by DS:DX in R register
dump.
Once installed, this ELD hooks into the debugger's R command register dump. If the dump is in
16-bit mode and not configured for 40-column display, and lDebugX is not in Protected Mode,
this ELD will take effect. It will display a trailer to the second line of the register dump, listing
what text is found starting at the address indicated by DS:DX.

Example:

AX=0A07 BX=FD2B CX=0000 DX=02BB SP=FFFC BP=0000 SI=0087 DI=0000
DS=5A21 ES=5A21 SS=5A21 CS=5A21 IP=03FF NV UP EI PL NZ NA PO NC "Other kernel,"
5A21:03FF 80FFFD cmp bh, FD

15.50 CHECKSUM - Calculate checksum over a memory range.
This ELD can be used as a transient command or installed residently. Install with anINSTALL
keyword. TheCHECKSUMcommand accepts a range parameter, with a default length of 512
Bytes. After the range an optional initial sum can be specified. This sum defaults to 1.

The checksum is an unsigned 16-bit number. It is calculated according to the following
pseudocode:

initial sum = 1
for every byte in range:
 sum = sum * 31
 sum += byte value
 sum = sum & 0FFFFh

15.51 HINT - Display TracList hints to outer debugger
This ELD can be used as a transient command or installed residently. Install with anINSTALL
keyword. When run, this command displays TracList listing offset hints for all currently installed
ELDs of the debugger running this ELD. The hints are written to the terminal of another lDebug
instance, assumed to be the outer debugger. This utilises that outer debugger's AMISMSG
service, so the amismsg.eld and AMIS interface must be installed in that debugger.

An optional keywordSKIPSELF may be specified. If it is given, then the hint.eld will not write
a hint corresponding to its own ELD code instance. This is useful for running with eldcomp.eld.

15.52 HINTOTH - Display TracList hints of the other link debugger
This ELD can be used as a transient command or installed residently. Install with anINSTALL
keyword. When run, this command accesses the other link debugger's installed ELDs. This
utilises the other link debugger's AMISOTH service, so the amisoth.eld and AMIS interface
must be installed in that debugger. The HINTOTH command will display TracList listing offset
hints for all currently installed ELDs of the detected other link debugger.

15.53 CHSTOOL - Work with int 13h partitions and geometry.
Utilities to work with int 13h unit partitions and geometry. Can be used as a transient command
or installed residently.

196

15.54 S - Search command with additional support for WILD and
CAPS keywords
This ELD provides the same basic command as the S command (section 10.47). However, it
allows some extensions as well. The S ELD can be used transiently or installed residently. To
invoke a resident S ELD the command letter S must be recognised as a string, that is the search
range's first letter or digit must not immediately follow the ‘S’ letter.

The basic command format is:

search S range [REVERSE] [SILENT number] [RANGE [CAPS] range|list]

The keywords REVERSE, SILENT, and RANGE are all described in section 10.47. The list
parameter is based on the debugger's generic list parameter type, refer to section 8.5. However,
it adds three new keywords:

15.54.1 WILD - Search wildcard

This keyword when encountered in the search pattern list inserts one wildcard item of the current
element size. As the default item size is byte, a WILD keyword defaults to inserting a byte-sized
wildcard. After for example AS WORDS, a WILD keyword instead will insert a word-sized (2-
byte) wildcard.

Using wildcards may degrade search performance.

15.54.2 CAPS - Search with capitalisation folding

This keyword enables the search to treat every subsequent byte of the search pattern as requiring
capitalisation be folded, so that small letters and big letters (in the ASCII alphabet) will match
one another.

The CAPS keyword may appear in a search pattern list, or after the RANGE keyword. In the
latter case capitalisation is folded for the entire search pattern range.

Using the CAPS keyword may degrade search performance.

15.54.3 UNCAPS - Reset search to do no capitalisation folding

This keyword is only allowed in a search pattern list. It resets the status set up by the CAPS
keyword, so that byte values are matched exactly again.

15.54.4 S ELD internals

The wildcard and caps search modes are implemented using a tag buffer. Every tag consists of
two bits, one of which indicates that the corresponding byte is a wildcard and the other one for
capitalisation folding.

There are three families of internal functions to handle search that may involve nonzero tags:

• Repeated scan byte for a given value

• Scan a single byte for a given value

• Compare trailing string after an initial byte match was found

197

15.54.4.1 S ELD - Byte scan functions

The first function is used to scan for the pattern's first byte in almost the entire search space. The
second function is used to scan the very last possible match of the first byte. This distinction is
needed because of how the debugger handles search space length of up to 64 KiB with a 16-bit
counter.

Both of these functions must work either with Direction Flag cleared (UP) or set (DN).
Additionally, there is a branch to an a32 variant of each of these functions to allow searcning in
32-bit segments.

The repeated scan byte functions are implemented by calling the single byte scan functions in
an appropriate loop.

If the tag of the search pattern's first byte is zero, simple functions that only consist of the a32
dispatching and a single string operation are used. Tnis is a speed optimisation.

15.54.4.2 S ELD - Trailing string comparison function

The third function is used after a candidate match is identified from the first byte scan. If any
tags are nonzero in the search pattern, then complicated functions are used. These will loop
like the single string operation ‘repe cmpsb ’ would, but internally they use the single byte
scan functions to handle tags appropriately. The tags are iterated through alongside the pattern
values.

This function always works with the Direction Flag cleared (UP) although it would work
otherwise as well. As for the other two functions there is a32 dispatching for searching in 32-
bit segments.

If all tags are zero, the trailing string comparison function is handled by simple functions
consisting of a32 dispatching and a single string operation. If the RANGE CAPS keywords are
used together, medium complex functions are used which always pass an immediate tag value
to the single byte scan function. Otherwise the full handling of all possible tag combinations is
done, and the loop keeps track of both the current offset, the remaining length, and the current
bit position in the tag buffer.

15.55 DOSSPACE - Display DOS drive total and free space
This ELD can be installed residently or used transiently. The DOSSPACE command accepts a
drive specification. If none is given, the DOS default drive is used. If a drive letter followed by a
colon is specified, that drive is used. Else, a number is parsed. The number 0 selects the default
drive, the number 1 selects drive A:, and so on.

Before the drive specification, the keywordEXPANDEDmay be specified. This will list more of
the interrupt 21h function 7303h fields.

The DOSSPACE command requires DOS to be available. Once run, it will call interrupt 21h
functions 36h and 7303h.

Example output of a FAT12 diskette drive on the lMS-DOS kernel:

-ext extlib.eld dosspace
DOS function 36h dl=00h call returned ax=0001h, bx=002Eh, cx=0200h, dx=0B1Fh.

198

spc 0001 1
free 002E 46
bps 0200 512 512 B
total 0B1F 2847
bpc 0000_0200 512 512 B
sfree 0000_002E 46
stotal 0000_0B1F 2847
bfree 0000_0000_5C00 23552 23.0 KiB
btotal 0000_0016_3E00 1457664 1423 KiB
DOS function 7303h not supported, error=7300h!
-

Example output of a FAT32 hard disk drive on the Enhanced DR-DOS kernel, with the
EXPANDEDkeyword specified:

-ext a:extlib.eld dosspace expanded C:
DOS function 36h dl=00h call returned ax=0004h, bx=A6B6h, cx=0200h, dx=F614h.
spc 0004 4
free A6B6 42678
bps 0200 512 512 B
total F614 62996
bpc 0000_0800 2048 2048 B
sfree 0002_9AD8 170712
stotal 0003_D850 251984
bfree 0000_0535_B000 87404544 83.3 MiB
btotal 0000_07B0_A000 129015808 123 MiB
ext.spc 0000_0001 1
ext.free 0002_9AD8 170712
ext.bps 0000_0200 512 512 B
ext.total 0003_D850 251984
ext.bpc 0000_0000_0000_0200 512 512 B
ext.sfree 0000_0000_0002_9AD8 170712
ext.stotal 0000_0000_0003_D850 251984
ext.bfree 0000_0000_0535_B000 87404544 83.3 MiB
ext.btotal 0000_0000_07B0_A000 129015808 123 MiB
ext.physsfree 0002_9AD8 170712
ext.physstotal 0003_D850 251984
ext.physfree 0002_9AD8 170712
ext.phystotal 0003_D850 251984
ext.reserved 0000_0000_0000_0000 0
-

The fields afterext.btotal are only displayed if theEXPANDEDkeyword is specified.

15.56 DOSSTRAT - Display DOS memory allocation strategy and
UMB link status

This ELD can be installed residently or used transiently. It displays the current DOS memory
allocation strategy and UMB link status, as returned by int 21h functions 5800h and 5802h. An
optional FORCE keyword will run the int 21h calls even if the debugger is in InDOS mode.

199

15.57 DHM - Dump HMA Memory Control Block chain
This ELD can be installed residently or used transiently. The DHM command dumps the chain
of HMA MCBs. These are used by MS-DOS v7 and lDOS to partition the HMA, if it is managed
by DOS.

The following parameters are accepted:

FORCE

Force calling int 2Fh function 4A04h even if InDOS

HEADER

Display header line to the list

TABLE

Display header line and format list as a table

Offset expression

Do not call int 2Fh function 4A04h, instead use expression result as first HMCB offset (in
segment FFFFh). It is assumed that A20 is on. Usually 30h will access the first HMCB.

15.58 ERRFIX - Fix error message display
This ELD cannot be used transiently, it must be installed residently using anINSTALL keyword.

The purpose of this ELD is to improve the display of the ‘^ Error ’ message (the "error
carat") in the presence of other ELDs. Integration with errfix.eld has been added to the following
Extensions:

• EXTNAME

• ALIAS

• VARIABLE

• IFEXT

If ERRFIX has been installed, modifications to a command made by them will be reflected in
the column at which the ‘^ Error ’ message is written. ERRFIX now also works to put the
message at the correct position if a Script for lDebug file contains a tab, or a tab is entered
when getinput mode is disabled. This assumes that tabs cause the next text to be aligned to an
8-column tab stop boundary.

The resident ERRFIX command accepts five different commands:

UNINSTALL

Uninstall the ELD

DEBUG

Display debugging output's status (disabled or enabled)

200

DEBUG ON

Enable debugging output

DEBUG OFF

Disable debugging output

DEBUG TOGGLE

Toggle status of debugging output

The debugging output will dump the command line contents (at the beginning of theline_in
buffer) at the time the error handler is called.

Every text byte takes up three columns in the dump. Tabs are replaced by the text ‘\t ’,
unexpected Carriage Returns or Line Feeds are replaced by the texts ‘cr ’ or ‘ lf ’ respectively,
and all other control codes (ASCII code below 32) are replaced by a single dot. The end of
the buffered text is indicated by an all-caps ‘CR’. Below each text byte, the expected column is
displayed as two hexadecimal digits. The text and column at which the error message will be
written are both marked by an asterix ‘* ’ prefix within the dump.

Examples, with ERRFIX and VARIABLE and EXTNAME installed:

~-ext bases.eld
 e x t b a s e s . e l d *CR
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C*0D
 ^ Error
~-ext bases
 e x t b a s e s . E L D *CR
 00 01 02 03 04 05 06 07 08 08 08 08 08*09
 ^ Error
~-ext set run vldfoo=r ax .
~-%vldfoo% .
 r a x . *. CR
 00 00 00 00 00 00 08*09 0A
 ^ Error
~-variable run -h%vldfoo% .
 - h *r a x . . CR
 0D 0E*0F 0F 0F 0F 0F 0F 17 18 19
 ^ Error
~-variable run %% %vldfoo%
*% r a x . CR
*0D 0F 10 10 10 10 10 10 18
 ^ Error
~-

15.59 RCEXEC - Add RC.EXECUTE command
This ELD cannot be used transiently, it must be installed residently using anINSTALL keyword.

Running the newRC.EXECUTEcommand that's added by this ELD is handled by replacing
the textRC.EXECUTEby RC.REPLACE, then injecting anRCcommand to immediately run

201

the RC buffer. This way a single command can be used to run multiple commands. This is
particularly useful for alias.eld aliases.

Other than theRC.EXECUTEcommand, this ELD only supports theRCEXEC UNINSTALL
command to try uninstalling this ELD.

202

Section 16: Extension for lDebug format

16.1 ELD executable format
An ELD file may have an "ELD trailer header". If present, this structure must be located at the
very end of the file. It has the following structure:

 struc ELD_TRAILER_HEADER
eldthSignature: resb 8 ; "ELD1TAIL"
eldthHeaderOffset: resd 1 ; negative displacement from eldthSignature,
 ; add this dword to the seek offset
eldthReserved: resw 1 ; reserved, must be initialised to zero
eldthChecksum: resw 1 ; sum of all words in trailer header = 0
 endstruc
 endarea ELD_TRAILER_HEADER, 1

If the trailer header is present, then the seek offset of eldthSignature plus the value in
dword [eldthHeaderOffset] gives the seek offset of the ELD header. The ELD header
must start before the trailer header, that is the computed ELD header offset must be below the
offset of the ELD trailer header. If the ELD trailer header is not present then the ELD header
must be located at seek offset 0, at the very beginning of the file.

(The eldapend.c tool allows to append an ELD to an existing file along with the appropriate
ELD trailer header.)

The ELD header structure has the following structure:

 ; ELD executable header
 struc ELD_HEADER
eldhSignature: resb 4 ; "ELD1"
 resb 3 ; reserved
 resb 1 ; 26 (Ctrl-Z)
eldhCodeOffset: resd 1 ; position displacement from eldSignature
eldhCodeImageLength: resw 1 ; amount bytes, at least 32
eldhCodeAllocLength: resw 1 ; amount bytes, added to prior. sum < 64 KiB
eldhDataOffset: resd 1
eldhDataImageLength: resw 1 ; (zero allowed)
eldhDataAllocLength: resw 1 ; (zero allowed)
eldhCodeEntrypoint: resw 1 ; within code section, used as displacement
eldhReserved: resb 4 ; reserved
eldhExtensionSize: resw 1 ; from eldhSignature, -> past eldhx fields in use
 endstruc
 endarea ELD_HEADER, 1

The first four bytes and the 8th byte are checked to match the known format by the debugger.

203

Extensions should go into the last 6 bytes which should be zero-initialised for now. That is,
unless a new ELD format is chosen, which is indicated by changing the signature in the first
four bytes. The header is exactly 32 Bytes long. The last field,eldhxExtensionSize , is
the first such extension. It specifies the size of the extension header, refer to section 16.1.1.

The header must be found either using the ELD trailer header or it must be found at the
very beginning of the ELD file. The offsets given in the fieldseldhCodeOffset and
eldhDataOffset are to be interpreted as being displacements that are added to the base
equal to the position of the start of the ELD header structure. (This is the position of the
eldhSignature field.)

The length fields are typically paragraph-aligned but this is not a requirement. However, the
resulting allocation of code and data space in memory is always rounded up to a paragraph
boundary. The image and alloc length fields for either the code space or the data space must not
overflow 16 bits when added. (Code and data together may exceed 64 KiB however.) Keep in
mind that ELD code space is typically 8 or 16 KiB (up to 65_520 Bytes maximum) and ELD
data space is by default 16 KiB.

Allocation beyond the images is not generally initialised by the debugger. If the ELD wishes to
initialise it, this needs to be included in the ELD code.

The entrypoint field is an offset within the code section. The exact IP value is derived from this
by adding the ELD's instance base offset to the entrypoint field value. The CS value points to the
ELD code segment or a code selector referencing the same segment. The entrypoint is entered
with the following function protocol:

 ; INP: es:dx -> loaded initial ELD image
 ; ELD instance structure filled
 ; es => ELD code area
 ; ds:di -> link info
 ; ss:bx -> loaded initial data
 ; ss:si -> command line tail
 ; cs:ip -> entrypoint
 ; ss:sp -> far return address for current mode
 ; STT: UP, EI

All other registers (cx, ax, bp, fs, gs, high words) are don't cares.

It is expected that the entrypoint will run a linker, which uses the link info pointed to by DS:DI
to link the ELD with the exposed interfaces of the debugger.

16.1.1 ELD executable extension header

The eldhxExtensionSize field in the ELD executable header specifies the size of the
extension header. If it is zero, this is a backwards compatible indication of there not being an
extension header.

The extension header is of the following format:

 struc ELD_HEADERX
eldhxHeader: resb ELD_HEADER_size
eldhxDescriptionOffset: resd 1 ; zero if none, from eldhxHeader. <= 128 Bytes
eldhxHelpOffset: resd 1 ; zero if none, from eldhxHeader
eldhxLibTable: resd 1 ; zero if none, from eldhxHeader

204

eldhxDateTimeOffset: resd 1 ; zero if none, from eldhxHeader
 alignb 16
 endstruc

Each currently defined extension field can be zero to indicate it isn't in use. Therefore, to make
use of a field both theeldhxExtensionSize field must point past it and its content must
be nonzero. The fields are as follows:

eldhxDescriptionOffset

Points to an ASCIZ string in the file, relative to the beginning of the header. This gives a
single line describing the ELD. The terminating NUL must appear in the first 128 bytes
past the beginning.

eldhxHelpOffset

Points to another ASCIZ string. This gives a help message. Unlike the description, it is
expected that the help message contains linebreaks.

eldhxLibTable

Points to an ELD_LIBTABLE structure, refer to section 16.1.2. The presence of this
indicates that this ELD is a library ELD, containing other ELDs. This is only used as yet
for extlib.eld and its compressed counterpartextpak.eld .

eldhxDateTimeOffset

Points to an ASCIZ string. The string is a date time stamp, currently always in a combined
ISO 8601 format, with seconds precision, with the time zone indicator ‘Z’. For instance,
2025-07-18T18:38:26Z .

After the date time stamp's terminating NUL, an extension follows. This is currently always
a zero byte. If this extension is defined in a future revision, its use is indicated by a nonzero
byte in this position.

The help, library table, and date time stamp are usually all contained within the ELD's data
image. However, this is not required.

16.1.2 ELD library executable format

The library table, if present, is pointed to by theeldhxLibTable field in the extension header.
It should be aligned to a dword boundary, albeit this is not required at this time. This is the
structure of its beginning:

 struc ELD_LIBTABLE
eldltFormat: resw 1
 ; 0 = uncompressed
 ; 2 = heatshrink compressed
 ; 3 = lzexedat -4 compressed
 ; 4 = lzexedat -4 -l compressed
eldltAmount: resw 1
eldltOffset: resd 1 ; from eldhxHeader
eldltCompressedLength: ; (dword, only present if format 2 or 3)
 endstruc
 endarea ELD_LIBTABLE, 1

205

TheeldltAmount field indicates how many ELDs are contained in this library. It is valid for
this field to hold a zero, albeit this isn't ever the case yet.

TheeldltOffset field gives the position of the beginning of the image of contained ELDs,
relative to the beginning of the library's ELD header. This image is compressed if the library
format equals 2 or 3. (Format 1 was an earlier format, now unused.)

The field namedeldltCompressedLength is only present for the two supported
compressed formats. It gives the length of the compressed image. It was absent in format 1,
which is why format 2 was created.

After either eldltOffset or eldltCompressedLength , the list of per-ELD table
entries starts. This contains as many entries as indicated byeldltAmount . Every entry is 12
bytes long.

The first dword indicates a displacement within the image of contained ELDs, pointing to an
ELD's header. If the image is compressed, this dword addresses the depacked data, not the
compressed image.

The trailing 8 bytes give the contained ELD's library entry name. If it is shorter than 8 bytes it
is padded using blanks (ASCII 32).

16.2 ELD instance format
Each ELD instance is stored in the ELD code space with the following format:

 ; ELD instance header
 struc ELD_INSTANCE
eldiStartCode: resw 1 ; -> this structure itself (para aligned)
eldiEndCode: resw 1 ; -> behind memory used by instance (para aligned)
eldiStartData: resw 1 ; -> data in data entry section (para aligned), or 0
eldiEndData: resw 1 ; -> behind data (para aligned), or 0
eldiIdentifier: resb 8 ; blank-filled text
eldiFlags: resw 1 ; flags
eldiReserved: resb 14 ; reserved
 endstruc
 ; flags for eldiFlags:
eldifResident: equ 1

The first field references its own address. The second field indicates where the next ELD instance
lives, unless it matches the value ofword [extseg_used] . The second field must always
be at least the value of the first field plus 32 (the size of the instance header). The third and
fourth field specify where the ELD data block associated with this ELD instance lives, unless
both fields are zero indicating no ELD data block. All of these first four fields are initialised by
the loader (usually the debugger EXT command handler) upon initialising an ELD. However,
the ELD is free to modify them within the given constraints. (Note that the ELD buffer fields
described in section 16.6.1 must be modified to match the ELD instance fields, depending on
how they are changed.)

The fifth field contains an 8 byte all-printable-ASCII text name that identifies the ELD. It should
be initialised within the ELD executable. When shorter than 8 bytes, it should be padded with
blanks (value 32).

206

The flags field indicates whether the ELD instance is resident. If it is resident, then other
commands (including the EXT command and ELD space reclaim) will not re-use the code or
data areas referenced by this instance. If it is not resident, then any re-entry into the debugger's
cmd3 command loop should be assumed to overwrite this instance's memory. Note that any
DOS I/O and any debugger code that may branch to the debugger error handlers may become
a point at which the debugger returns to the command loop.

The remaining fields are reserved and should be initialised to all zeroes.

16.3 ELD link info format
The ELD link info table looks like the following structure:

 ; ELD link info header
 struc ELD_LINKINFO
eldlSignature: resw 1 ; 0E1D1h
eldlReserved: resw 2
eldlUseLinkHash: resw 1
eldlDataAmount: resw 1
eldlDataPrefixes: resw 1
eldlDataEntries: resw 1
eldlDataAddresses: resw 1
eldlCodeAmount: resw 1
eldlCodePrefixes: resw 1
eldlCodeEntries: resw 1
eldlCodeAddresses: resw 1
 endstruc

TheeldlUseLinkHash field should be 1 to indicate hashes are used, and 0 to indicate the
prefix text is used instead. Other values are not valid to current ELDs.

It is expected that a linker embedded into an ELD will use this table to link to the exposed
debugger interfaces. The linker may also be used to resolve internal references of the ELD to
its own code section and data block, both of which are loaded to dynamically chosen offsets.

The amount fields indicate how many different links of each type there are. All three arrays of
the same type have as many entries as the amount field of that type indicates.

The prefixes table contains either a 16-bit hash value per link name, or the first two text bytes
of each link name. The hash value is calculated using the symbolic branch text hash function,
which is implemented as follows:

hash = 1
for each text value byte:
 hash = (hash * 31 + value byte) & 0FFFFh

The entries table contains a word per link that points to a byte-counted message string in the
same segment as the link info table. This message starts with a byte giving the remaining length
of the message. If hashes are used, the message is the entire link name. Otherwise, the message
is the link name remaining after the first two bytes. (Link names shorter than two bytes are not
allowed. Link names should be at most 64 bytes long.)

The address table for the data links contains one word per link. This address is equal to the data
link value, typically but not always an offset in the debugger stack segment.

207

The address table for the code links contains two words per link. The first word is equal to the
code link offset value. This is the address of the code in its respective code section. The second
word indicates which section the link points to. It must be below 3, and indicates the section as
follows:

0

lDEBUG_CODE

1

lDEBUG_CODE2(only used if _DUALCODE build option enabled)

2

lDEBUG_ENTRY(not used yet)

These values must be used with the contents of thelinkcall_table to determine the offsets
within the default ELD (LINKCALL) which must be called in order to transfer control to the
respective section. The reference to the link call table must be found by linking part of the linker
itself first, using the data link to this table.

16.4 ELD link call table
The link call table contains mappings from section values in the code links to offsets within the
ELD code segment. These offsets are entries into the builtin default ELD, called LINKCALL.
This ELD is installed by the debugger's init if possible. It currently occupies a fixed size of 128
Bytes, including its own ELD instance header stored at offset 0 in the ELD code segment. Thus
if no regular ELDs are currently installed residently then a regular ELD will always be loaded to
offset 0080h in the ELD code segment. (Thus a--local-offset 80h switch to TracList
is useful.)

The link call table has the following format:

word .init

Specifies table is initialised and its format. Must be 1.

word Amount

Specifies how many section records follow. Typically 2 or 3.

dword per Section Record

Each record has the following format:

word Section Index

Match for a section value from a code link.

word Call Offset

Offset to call in ELD code segment.

An ELD link call is constructed as follows:

• Opcode byte for call rel16: 0E8h.

208

• Displacement word in rel16 format pointing to appropriate call offset.

• 2 bytes of code to handle return path, typically a jump short (0EBh).

• Offset word of code to call in target section.

The ELD linker is responsible for filling in this structure for every link call that is to be used.
The displacement is calculated from the call offset field of the link call table entry matching the
section value from the code link. It must be calculated by subtracting the offset behind the near
call rel16 instruction. The offset word to call is copied from the code link directly.

16.5 ELD linker internals
The ELD linker is composed of three files:

elddata.mac

ELD link data and internal relocations macros

eldcall.mac

ELD link call macros

eldlink.asm

ELD linker code and dump of relocation tables

16.5.1 ELD data macros

The ELD data macros contain the following mmacros for users:

internalcoderelocation

Can be used in DATA section or CODE section. Section type must match ‘DATA’ to indicate
a data section. Links a 16-bit word to the place the ELD code section is loaded. Parameter
specifies offset from current assembly address, defaulting to-2 to place the relocation at
the end of the prior instruction. The relocation must be filled with an address that uses the
code section vstart, typically a label in the code section.

internaldatarelocation

Can be used in DATA section or CODE section. Section type must match ‘DATA’ to indicate
a data section. Links a 16-bit word to the place the ELD data section is loaded. Parameter
specifies offset from current assembly address, defaulting to-2 to place the relocation at
the end of the prior instruction. The relocation must be filled with an address that uses the
data section vstart, typically a label in the data section.

linkdatarelocation

Can be used in DATA section or CODE section. Section type must match ‘DATA’ to indicate
a data section. Links a 16-bit word to a data link of the debugger. First parameter is data link
name. Second parameter specifies offset from current assembly address, defaulting to-2
to place the relocation at the end of the prior instruction. Third parameter is the keyword
‘ required ’ (default) or ‘optional ’. The relocation must be filled with an address
based on the labelrelocateddata . The value of this label is subtracted during linking,

209

and the value of the data link is added. If the data link is optional, a missing link will have
the linker zero the relocation field.

16.5.2 ELD code macros

The ELD code macros contain the following mmacros for users:

houdini

Emits a conditional int3 breakpoint. Can be disabled at build time with_HOUDINI=0
define. Can be disabled at run time by clearing DCO7 flag 100h or disabling debuggable
mode.

extcall

Sets up a 7-byte ELD extension call into the debugger. This should only be used in the
CODE section, that is a section with type not equal to ‘DATA’. An appropriate reference to
a code link is added to the link tables. There is a second parameter allowed, defaulting to
‘ required ’. The other options are ‘optional ’ and ‘PM required ’. When the code
link for an optional extcall is not found, the near call instruction is overwritten with three
NOP instructions.

extcallcall

Sets up a 3-byte call to an 8-byte extension call site, which will be composed of a 7-byte
ELD call and aretn instruction. This should only be used in the CODE section, that
is a section with type not equal to ‘DATA’. Multiple extcallcall uses to the same
target will use the same extension call site. This is the same code size for two calls, and
saves code size for three or more calls. However, it deoptimises the call stack because an
additional indirection is added. (The extension call site spends another word on the near
return address that points back to theextcallcall user.) This macro cannot be used
after eldcall_dump_callcall is used.

eldcall_dump_callcall

Must be called like ‘eldcall_dump_callcall ELDCALL_CALLCALL_LIST ’.
Dumps the extension call sites for all prior uses of theextcallcall mmacro. Also
will disable further use of theextcallcall mmacro. This should be used in the CODE
section, before the label to calculate the resident or installed size. (Resident size is the ELD
code size after the linker is discarded. Installed size is the ELD code size that remains if
the ELD is installed residently.)

16.5.3 ELD linker sources

The ELD linker does not define any mmacros. The assembly source file generally should be
included at the very end of the CODE section, and must be placed after all uses of the ELD data
and code macros. The only lines after the include directive should be an alignment directive and
the equate for the code section size.

The linker uses two labels: ‘linker ’ is the code entrypoint into the linker, which should be
called like this:

 ; INP: es:dx -> loaded initial ELD image
 ; ELD instance structure filled

210

 ; es => ELD code area
 ; ds:di -> link info
 ; ss:bx -> loaded initial data
 ; ss:si -> command line tail
 ; cs:ip -> entrypoint
 ; ss:sp -> far return address for current mode
 ; STT: UP, EI

This is typically entered into the ELD executable header's field named
eldhCodeEntrypoint , using a directive like ‘dw linker - code ’.

The second label used by the linker is ‘start ’, which the linker will branch to once it has
successfully finished linking. This is called with the following protocol:

 ; INP: es => ELD code segment (writable)
 ; ds:si -> command line tail
 ; ds:bx -> ELD data block
 ; ss:sp -> far return address for current mode
 ; STT: ds = ss, UP, EI

The far return address passed to these two entrypoints allows to return to the debugger without
the need for a code link to thecmd3 command loop. It expects a result code in ax, which it
will display as an error code in case it is above-or-equal 0FF00h. The linker returns with code
0FFFFh if a required link is missing. The reclaim ELD returns with code 0FFFDh on errors.

16.5.4 ELD two-pass linker

The linker will use two passes by default. The first pass links the linker itself. The second pass
links the ELD application. If the first pass succeeded, the second pass may utilise the debugger
output interfaces to display diagnostic messages (warnings or errors). The second pass will thus
emit error messages indicating exactly which links are missing, if any.

16.6 ELD interfaces

16.6.1 ELD code and data buffers

The ELD code section is referenced with the following variables:

extseg

ELD code section's segment

extcssel

In Protected Mode, code selector to ELD code section (D bit = 0)

extdssel

In Protected Mode, data selector to ELD code section (writable)

extseg_size

Size of the ELD code section (Bytes), para-aligned, 0 to 65_520

extseg_used

211

Amount of Bytes currently allocated to ELD instances, para-aligned, must match
eldiEndCode of the last ELD instance

The ELD data area is referenced with the following variables. It always lives in the
data/entry/stack section of the debugger.

extdata

Offset of ELD data area start, para-aligned. This must be at least 256.

extdata_size

Size of the ELD data area (Bytes), para-aligned

extdata_used

Amount of Bytes of the ELD data area that are currently allocated to ELD instances, para-
aligned

The extdata_size and extdata_used values have to be added to the offset base in
extdata to receive offsets in the debugger data section. Theextdata + extdata_size
calculation must not overflow and may result in up to 65_520. This maximum is reached if the
/Y=MAX switch to init was specified.

16.6.2 ELD command handler

The ELD command handler allows resident ELDs to be called whenever thecmd3 command
loop of the debugger has received a command and is about to execute it. The ELD command
handler is called soon after the command loop has received a command from thegetline
function. It is valid for the ELD command handler to modify the buffered text, pass on control
to the subsequent command handler without changes, or completely take over the command. In
the latter case, the ELD should branch back tocmd3 once it is done executing the command.

Multiple ELDs can install command handlers. The command handlers consist of a certain
structure which contains either an extcall to the labelcmd3_not_ext (if no further ELD
has installed a command handler) or a downlink made of a rel16 near jump to the next ELD's
command handler. Branching to this downlink or extcall structure allows to pass on a command
(modified or not) to the next ELD, or finally to the debugger's normal command processing.

The command handler entrypoint is called with the following registers:

; INP: al = first non-blank byte of command text
; si -> subsequent command text
; command text is stored in line_in variable
; sp = word [savesp]
; STT: ds = es = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode

The same protocol should generally be followed for passing on a command to the next command
handler or back to the debugger's command processing.

The command entrypoint must adhere to this structure for the first ELD installing a command
handler:

212

• A strict short jump to behind the downlink structure (2 Bytes, 0EBh 08h)

• An extcall tocmd3_not_ext , padded to 8 Bytes size (starts with 0E8h)

If another ELD command handler is already installed, one of the two ELDs will have its
command handler modified as follows:

• A strict short jump to behind the downlink structure (2 Bytes, 0EBh 08h)

• A near jump to the next command handler (starts with 0E9h)

• Padding to 8 Bytes size

The top-most ELD command handler is pointed to by the word variable
ext_command_handler . To install or uninstall a command handler, an ELD should use a
data link to this variable.

16.6.2.1 Procedure for installing ELD command handler

The suggested procedure for installing a command handler is:

1. Adjust sizes of ELD code instance and ELD data block to installed sizes

2. Obtain value of the debugger variableext_command_handler

3. If value is zero, skip to step 5

4. If value is nonzero:

1. Overwrite first byte of our ELD's extcall with 0E9h to create a downlink

2. Calculate displacement to write to our downlink to address the value obtained

3. Write the displacement to our structure to finish the downlink

5. Mark our ELD as resident in the ELD instance flags, if it isn't yet

6. Write our ELD's command handler address into the debugger variable
ext_command_handler

16.6.2.2 Procedure for uninstalling ELD command handler

The suggested procedure for uninstalling a command handler is:

1. Obtain value of the debugger variableext_command_handler

2. Verify the value is nonzero, or stop the attempt as this is an error condition

3. If value matches our command handler:

1. Check whether our handler does have a downlink structure (ie it has opcode 0E9h)

2. If yes, calculate the offset referenced by the downlink's displacement and write this
offset to the debugger variableext_command_handler

3. If no, write a zero to the debugger variableext_command_handler

4. Done

213

4. Else:

1. Verify that the current handler has a downlink structure (ie it has opcode 0E9h), or
stop on error condition

2. Remember the current handler in case its downlink matches our handler

3. Calculate the offset of the next handler from the downlink's displacement

4. If the offset doesn't match ours yet go back to step 1

5. Copy our downlink or extcall structure to the remembered previous handler, adjusting
the downlink or extcall displacement (same position) to make it work at the offset of the
remembered previous handler (thus add our base to the displacement then subtract their
base)

6. Done

16.6.3 ELD command injection

The ELD command injection allows an ELD to run most of thecmd3 command loop and then
regain the control flow. At that point, the ELD may either return to thecmd3 command loop,
or it may inject a command of its own creation, or it may continue the last part of the command
loop which callsgetline .

Installing command injection is done by writing an offset of a handler within the ELD code
section into the debugger variableext_inject_handler . Note that this variable is always
cleared to zero when it is read by thecmd3 command loop. To do command injection again,
the inject handler needs to write to the variable again.

An inject handler being installed may preserve the prior value of theext_inject_handler
variable and restore the value upon uninstalling itself.

The inject handler is called with this protocol:

; INP: sp = word [savesp]
; line_out -> prompt message
; di -> behind prompt message
; STT: ds = es = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode

The inject handler may usually branch to one of three entrypoints:

• cmd3 to restart command loop

• cmd3_not_inject to have command loop continue to callgetline00 next (must
pass di -> behind prompt message)

• cmd3_injected to have command loop accept an injected command

In the latter case, the entrypoint is to be branched to with the following protocol:

; INP: al = first non-blank byte of command text
; si -> subsequent command text

214

; command text is stored in line_in variable
; sp = word [savesp]
; STT: ds = es = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode

16.6.4 ELD preprocess handler

The ELD preprocess handler allows resident ELDs to be called whenever thecmd3 command
loop of the debugger has received a command and is about to execute it. The ELD preprocess
handler is called directly after the command loop has received a command from thegetline
function (or from an inject handler). It is valid for the ELD preprocess handler to modify the
buffered text, or pass on control to the subsequent handler without changes.

Preprocess handlers should not completely take over commands passed to them. The purpose
of preprocess handlers is to see commands first, before they are passed to the ELD command
handler chain. That means all installed preprocess handlers will see a command, even if one of
the ELD command handlers will take over the command execution.

Preprocess handlers have the same structure as ELD command handlers, except they use the
debugger variableext_preprocess_handler to point to the first preprocess handler, and
the last preprocess handler should chain tocmd3_preprocessed . Their installation and
uninstallation procedures are the same except for using the other variable and branch destination.
The protocol comment shown for ELD command handlers also applies to preprocess handlers.

16.6.5 ELD AMIS handler

This handler hooks into the debugger's AMIS interface. The handler is called early, after
matching the AMIS multiplex number but before any of the implementations of debugger
functions.

AMIS handlers have a similar downlink structure in their entrypoint as command handlers and
preprocess handlers. They start with a strict short jump, but the rel8 displacement is only equal
to 3. A downlink is composed of a strict near jump. The final AMIS handler contains a far return
instruction instead, and the downlink field is padded to 3 bytes using two NOP instructions.

The handler is called with this protocol:

; INP: NC
; ds => entry segment
; ss:sp -> far return address, ds, dx, cx, bx, ax, iret frame
; cx destroyed
; ax, bx, dx, bp, si, di, es, ss = original
; fs, gs, high words = original
; OUT: stack frame modified if desired
; CY to iret after popping frame,
; should retf (not use downlink)
; NC to process function as usual (stack al = function),
; may use downlink
; STT: Real/Virtual 86 Mode
; ss != debugger data/entry/stack segment
; UP
; DI

215

16.6.6 ELD multi-purpose puts handler

The ELD multi-purposeputs handler provides a hook into the debugger's debug terminal
output. This allows an ELD to filter, store, and/or suppress output generated by other parts of
the debugger or other ELDs.

A multi-purposeputs handler is installed by writing an offset in the ELD code section
to the debugger variableext_puts_handler . If this variable is nonzero, calls toputs
(that is, all normal debugger interface output) will transfer control to the specified handler.
The puts handlers now form a chain similar to command handlers, except that the variable
ext_puts_handler is used and the final handler chains back toputs_ext_done . (Prior
revisions of the ELDs did not create a chain of handlers.)

If to suppress the message output, the handler should resume the normal control flow of the
debugger by branching toputs_ext_done using an extcall (notan extcallcall!) with CY set.
The es register should be unchanged but all of ax, bx, cx, and dx need not be preserved. 386-
specific register upper words should be preserved. If to continue to output the message, the
handler should chain to the next handler with NC and es unchanged, and es:dx -> the message
to display, length ax. The bx and cx registers never have to be preserved.

Each handler is called with this protocol:

; INP: es:dx -> message to display
; ax = length of message
; NC
; OUT: CY to not pass on the message for display or write to silent buffer,
; have to transfer control directly to puts_ext_done (using extcall)
; ax and dx may be changed
; NC to pass on the message,
; may chain to next handler (or transfer to puts_ext_done)
; CHG: bx, cx, (upon transfer to puts_ext_done with CY: ax, dx)
; STT: ds = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode
; in Protected Mode, es should have a selector that
; references a segment base which matches an 86 Mode segment

16.6.6.1 ELD multi-purpose puts handler: puts_ext_next entrypoint

If a multi-purposeputs handler wishes to display text that differs from what it was passed, it
should call to theputs_ext_next handler. The call may be anextcall orextcallcall .
The handler must pass an appropriate entrypoint into the ELD code section in cx. This is usually
the chain entry of the handler, which is either a jump to a downlink or an extcall (not extcallcall)
to puts_ext_done . (If the chain entry is passed, there is no risk of re-entering the calling
handler.)

The protocol forputs_ext_next is as follows:

; INP: es:dx -> message to display
; ax = length of message
; NC
; CHG: ax, bx, cx, dx
; OUT: -

216

; STT: ds = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode
; in Protected Mode, es should have a selector that
; references a segment base which matches an 86 Mode segment
; (this is true of the debugger stack selector)

Passing a CY toputs_ext_next could indicate to skip the message displayed. However, if
the chain entry passed in cx has a downlink to another multi-purposeputs handler then the
Carry Flag is most likely ignored.

If the entry is a final transfer toputs_ext_done , the debugger function
transfer_ext_cx used to bounce the control flow back into the ELD code section will now
preserve the Carry Flag. (A prior bug would force NC in this transfer function for lDebugX, the
_PM=1 build.)

Finally, there is no supported use for passing CY here as the effect of not displaying a message
at all can be achieved by not callingputs_ext_next to begin with.

16.6.7 ELD puts copyoutput handler

This handler was added to support the co.eld (Copy Output ELD). It is called whenever the
debugger actually outputs text to the debugger terminal. This does not include output written
only to the silent buffer or suppressed in the multi-purposeputs handler. Also not included are
paging prompts as they are inserted later, after theputs copyoutput handler has returned.

The handlers for this hook form a chain similar to the ELD command handler. However, they
use the variableext_puts_copyoutput_handler and the last handler transfers control
to puts_copyoutput_ext_done .

; INP: es:dx -> message to display
; ax = length of message
; NC
; byte [in_getinput] = boolean flag indicating if output
; is from getinput session, either 0 (false) or 0FFh (true)
; CHG: bx, cx
; OUT: NC
; (could set CY and transfer directly to puts_copyoutput_ext_done
; in order to suppress output)
; STT: ds = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode
; in Protected Mode, es should have a selector that
; references a segment base which matches an 86 Mode segment

As noted above, aputs copyoutput handler can suppress the output passed to it. However, this
is not recommended and no handler currently does this.

16.6.8 ELD puts getline handler

This handler was added to support the co.eld (Copy Output ELD) and errfix.eld (Error carat
display fix ELD).

The co.eld functions 0 and 1 are called after getline has received a complete input line either

217

from int 21h service 0Ah or from the getinput function. It is not called if a "file" type input
source has yielded a line of input. This happens to match when the debugger enters a line into
its line editor history, which the debugger does directly after this handler chain returns.

The four functions 2, 3, 4, 5 are for errfix.eld. Of these, function 2 is called after getline_eol if
the input line was not displayed and function 3 is called in the same spot if the input line was
displayed. Function 4 is called by the error handler with an offset to where the error occurred
in line_in. Function 4 may be chained either as function 4 or as function 5, where function 5
passes an amount of columns while function 4 passes the offset.

The handlers for this hook form a chain similar to the ELD command handler. However, they
use the variableext_puts_getline_handler and the last handler transfers control to
puts_getline_ext_done .

The following protocol is used for the dispatch types 0 and 1 in bl:

; INP: byte [line_in + 1] = length of text (excluding CR), 0 to 254
; es:line_in + 2 -> text received, terminated by a CR
; bl = dispatch type,
; = 0 if input is from int 21h service 0Ah
; = 1 if input is from getinput function
; (note that output corresponding to this input has already
; been written to the ELD puts copyoutput handler)
; CHG: ax, bh, cx, dx, si, di
; OUT: pass along bl to next handler
; STT: es = ds = ss
; UP, EI
; may be in Protected Mode, Real 86 Mode, or Virtual 86 Mode
; in Protected Mode, es has a selector (stack selector) that
; references a segment base which matches an 86 Mode segment

The following protocol is used for the dispatch types 2 and 3 in bl:

; INP: byte [line_in + 1] = length
; line_in + 2 -> text
; word [promptlen] = length of prompt
; al = first non-whitespace text byte
; si -> next text
; bl = 2 or 3 means from getline_eol, any line read
; bl = 2 if not displayed, = 3 if displayed
; CHG: ah, bh, cx, dx, di
; STT: ds = es = ss
; UP, EI

The following protocol is used for the dispatch types 4 and 5 in bl:

; INP: bl = 4 means want to get effective carat position,
; si -> text with error
; bl = 5 means want to get carat position with
; si = input value for counter
; OUT: bl == 4 if to run default handling,
; si may be modified
; bl == 5 if to use si as number of spaces to indent,

218

; si = value for counter
; bl must be 4 or 5
; CHG: ax, bh, cx, dx, di
; STT: ds = es = ss
; UP, EI

The following protocol is used for the dispatch types >= 6 in bl, until further notice:

; INP: bl >= 6 if unknown dispatch type, should just pass along
; CHG: fl
; STT: preliminary assumption:
; ds = es = ss
; UP, EI

16.6.9 ELD variables

ELD variables allow an ELD to add variables to the debugger's ‘isvariable? ’ function,
which is used in the expression evaluator as well as in the R variable commands.

A certain number of ELD variables are allocated space in the list of multi-byte-text
‘ isvariable? ’ structures. The build option to add these defaults to reserving space for 16
ELD variables.

ELD variables can be used for special purpose read-only variables, as the ELD is called for the
"special set up" implementation for the variable. However, writable variables are possible using
this interface only if they are trivial.

An ELD should use the following to install an ELD variable:

• Data linkext_var points to the 10-byte ELD variable structures

• Data linkext_var_amount specifies how many structures exist

• Data linkext_var_format indicates the format of the structures, currently only format
1 is defined (this should be checked)

• Data link ext_var_size indicates theISVARIABLESTRUC_size (this should be
checked)

• Data link isvariable_morebyte_nameheaders.ext points to the 2-byte name
headers for each ELD variable

• Data linkvar_ext_setup (albeit actually pointing at code) is provided to fill in the ELD
variable structure, specifically theivSetup field which must point to a near function in
the expr.asm code section (hence an ELD has to use this particular function to branch to
the ELD's code)

• Code linkvar_ext_setup_done which the ELD variable set up code should branch
to using an extcall (notan extcallcall!) once it is done

The following protocol specifies what the variable set up code is called as:

; INP: ax = array index (0-based)
; cx = offset of this handler (ip)
; dil = default size of variable (1..4)

219

; dih = length of variable name
; CHG: si, ax, dx
; OUT: NC if valid,
; bx -> var, di = 0 or di -> mask
; cl = size of variable (1..4)
; ch = length of variable name

An ELD variable should be installed by scanning the structures pointed to byext_var for a
structure with the first word (ivName) equal to zero. If this is found, the ELD variable structure
is to be copied into this slot of theisvariable? structure array. The appropriate slot in the
name headers also has to be filled with the first two text bytes of the variable name.

An ELD variable is uninstalled by clearing the first three words of the structure (ivName ,
ivFlags , and importantlyivAddress), and also clearing the name headers slot to a zero
value.

16.6.10 ELD near transfer interface

This hook allows to enter an ELD from a near call in the (first) debugger code section. The ELD
can return to the near caller, too.

The entrypoint isnear_transfer_ext_entry . This entrypoint's offset address is
available as a data link in order to allow it to be entered into callback variables.

When this entry is run, the original value ofcx is pushed, then the value of
word [near_transfer_ext_address] is loaded tocx , and then control is transferred
to the ELD viatransfer_ext_cx .

Note that there is only one entrypoint and one variable for this interface. That means either it
can only be used for one particular callback, or the called ELD function has to dispatch based
on the near return address on the stack.

The bootloaded directory scanner, accessed by callingscan_dir_aux , provides several
offsets in its code as data links to facilitate such dispatching:

..@boot_scan_dir_return_fat16_root_entry

Return when called as a FAT12 or FAT16 root directory entry is to be scanned, calling
word [handle_scan_dir_entry]

..@boot_scan_dir_return_subdir_or_fat32_entry

Return when called as a subdirectory or FAT32 root directory entry is to be scanned, calling
word [handle_scan_dir_entry]

..@boot_scan_dir_return_filenotfound

Return when called as the directory search has ended after the scan function returned CY,
callingword [handle_scan_dir_not_found]

To return to the near caller, the ELD function should transfer the control flow to
near_transfer_ext_return with anextcall , not anextcallcall . This handler
will pop cx four times then return near.

220

Section 17: Command help

17.1 lDebug help
lDebug (YYYY-MM-DD), debugger.

Usage: LDEBUG[.COM] [/C=commands] [[drive:][path]progname.ext [parameters]]

/C=commands semicolon-separated list of commands (quote spaces)
/IN discard command line buffer, do not run config
/A=MAX expand auxiliary buffer to maximum, #24_576 Bytes
/A=MIN restrict auxiliary buffer to minimum, #8_208 Bytes
/A=number set auxiliary buffer size to hex number of bytes
/A=#number set auxiliary buffer size to decimal number of bytes
/A alias for /A=MAX
/X=[MAX|MIN|number] change ELD code buffer size, 0 to #65_520 Bytes
/Y=[MAX|MIN|number] change ELD data buffer size, 0 to #29_504 Bytes
/H=[MAX|MIN|number] change history buffer size, #260 to #65_520 Bytes
/B run a breakpoint within initialisation
/P[+|-] append ext to initial filename and search path
/F[+|-] always treat executable file as a flat binary
/E[+|-] for flat binaries set up Stack Segment != PSP
/V[+|-] enable/disable video screen swapping
/2[+|-] enable/disable use alternate video adapter for output
progname.ext (executable) file to debug or examine
parameters parameters given to program

For a list of debugging commands, run LDEBUG and type ? at the prompt.

17.2 INSTSECT help
INSTSECT: Install boot sectors. 2018--2024 by E. C. Masloch

Usage of the works is permitted provided that this
instrument is retained with the works, so that any entity
that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

Options:

a: load or update boot sectors of specified drive
/M=filename operate on FS image file instead of drive
/MN operate on drive instead of image file (default)

221

/MS=number set sector size of FS image file (default 512)
/MO=number set offset in image file in bytes (default 0)
/MOx=number set offset (x = S sectors, K 1024, M 1024 * 1024)

/Fx=filename replace Xth name in the boot sector, X = 1 to 4
/F=filename alias to /F1=filename

/U KEEP keep default/current boot unit handling (default)
/U AUTO patch boot loader to use auto boot unit handling
/U xx patch boot loader to use XXh as a fixed unit

/P KEEP keep default/current part info handling (default)
/P AUTO patch boot loader to use auto part info handling
/P NONE patch boot loader to use fixed part info

/Q KEEP keep default/current query geometry handling (default)
/Q AUTO patch boot loader to use auto query geometry handling
/Q NONE patch boot loader to use fixed geometry

/L KEEP keep default/current LBA handling (default)
/L AUTO patch boot loader to use auto LBA handling
/L AUTOHDD patch boot loader to use auto LBA (HDD-only) handling
/L NONE patch boot loader to use only CHS

/G KEEP keep all current geometry (default)
/G AUTO read all auto geometry from DOS
/G HEADS=x set geometry CHS heads (x = KEEP, AUTO, numeric)
/G SECTORS=x set geometry CHS sectors (x = KEEP, AUTO, numeric)
/G HIDDEN=x set geometry hidden (x = KEEP, AUTO, numeric)

/SR do not read boot sector from source file (default)
/S=filename read boot sector loader from source file
/S12=filename as /S=filename but only for FAT12 (also /S16, /S32)
/SV validate boot sector jump and FS ID (default)
/SN do not validate boot sector jump and FS ID
/SI validate FAT32 FSIBOOT compatibility (default)
/SJ do not validate FAT32 FSIBOOT compatiblity
/SG=sign check for FAT32 FSIBOOT exact signature match

/BS write boot sector to drive's boot sector (default)
/B=filename write boot sector to file, not to drive
/BN do not write boot sector
/BR replace boot sector loader with built-in one (default)
/BO keep original boot sector
/BC restore boot sector from backup copy

Only applicable for FAT32 with sector size below or equal to 512 bytes:

/IS write FSIBOOT to drive's FSINFO sector (default)
/I=filename write FSIBOOT to file, not to drive
/IB write FSIBOOT to boot sector file (see /B=filename)

222

/IN do not write FSIBOOT
/IR replace reserved field with built-in FSIBOOT (default)
/IO keep original reserved fields (including FSIBOOT area)
/IC restore FSINFO from backup copy
/IZ zero out reserved fields (including FSIBOOT area)
/II leave invalid FSINFO structure
/IV make valid FSINFO if there is none (default)

Only applicable for FAT32:

/C force writing to backup copies
/CB force writing sector to backup copy
/CI force writing info to backup copy
/CN disable writing to backup copies
/CNB disable writing sector to backup copy
/CNI disable writing info to backup copy
/CS only write backup copies if writing sectors (default)
/CSB only write sector to backup copy if writing sector
/CSI only write info to backup copy if writing sector

223

Section 18: Online help pages

18.1 ? - Main online help
lDebug (YYYY-MM-DD) help screen
assemble A [address]
attach process ATTACH psp
set breakpoint BP index|AT|NEW address
 [[NUMBER=]number] [WHEN=cond] [ID=id]
 set ID BI index|AT address [ID=]id
 set condition BW index|AT address [WHEN=]cond
 set offset BO index|AT address [OFFSET=]number
 set number BN index|AT address|ALL number
 clear BC index|AT address|ALL
 disable BD index|AT address|ALL
 enable BE index|AT address|ALL
 toggle BT index|AT address|ALL
 swap BS index1 index2
 list BL [index|AT address|ALL]
compare C range address
dump D [range]
dump bytes DB [range]
dump words DW [range]
dump dwords DD [range]
dump interrupts DI[R][M][L] interrupt [count]
dump MCB chain DM [segment]
display strings DZ/D$/D[W]# [address]
dump text table DT [T] [number]
enter E [address [list]]
run extension EXT [partition/][extensionfile] [parameters]
fill F range [RANGE range|list]
go G [=address] [breakpts]
goto GOTO :label
hex add/sub H value1 [value2 [...]]
base display H BASE=number [GROUP=number] [WIDTH=number] value
input I[W|D] port
if numeric IF [NOT] (cond) THEN cmd
if script file IF [NOT] EXISTS Y file [:label] THEN cmd
load program L [address]
load sectors L address drive sector count
move M range address
80x86/x87 mode M [0..6|C|NC|C2|?]
set name N [[drive:][path]progname.ext [parameters]]

224

set command K [[drive:][path]progname.ext [parameters]]
output O[W|D] port value
proceed P [=address] [count [WHILE cond] [SILENT [count]]]
quit Q
quit process QA
quit and break QB
register R [register [value]]
Run R extended RE
RE commands RE.LIST|APPEND|REPLACE [commands]
Run Commandline RC
RC commands RC.LIST|APPEND|REPLACE [commands]
toggle 386 regs RX
search S range [REVERSE] [SILENT number] [RANGE range|list]
sleep SLEEP count [SECONDS|TICKS]
trace T [=address] [count [WHILE cond] [SILENT [count]]]
trace (exc str) TP [=address] [count [WHILE cond] [SILENT [count]]]
trace mode TM [0|1]
enter TSR mode TSR
unassemble U [range]
view screen V [ON|OFF [KEEP|NOKEEP]]
write program W [address]
write sectors W address drive sector count
run script Y [partition/][scriptfile] [:label]

Additional help topics:
 Registers ?R
 Flags ?F
 Conditionals ?C
 Expressions ?E
 Variables ?V
 R Extended ?RE
 Run keywords ?RUN
 Options pages ?OPTIONS
 Options ?O
 Boot loading ?BOOT
 lDebug build ?BUILD
 lDebug build ?B
 lDebug sources ?SOURCE
 lDebug license ?L

18.2 ?R - Registers

Available 16-bit registers: Available 32-bit registers: (386+)
AX Accumulator EAX
BX Base register EBX
CX Counter ECX
DX Data register EDX
SP Stack pointer ESP
BP Base pointer EBP
SI Source index ESI

225

DI Destination index EDI
DS Data segment
ES Extra segment
SS Stack segment
CS Code segment
FS Extra segment 2 (386+)
GS Extra segment 3 (386+)
IP Instruction pointer EIP
FL Flags EFL

Enter ?F to display the recognized flags.

18.3 ?F - Flags
Recognized flags:

Value Name Set Clear
0800 OF Overflow Flag OV Overflow NV No overflow
0400 DF Direction Flag DN Down UP Up
0200 IF Interrupt Flag EI Enable interrupts DI Disable interrupts
0080 SF Sign Flag NG Negative PL Plus
0040 ZF Zero Flag ZR Zero NZ Not zero
0010 AF Auxiliary Flag AC Auxiliary carry NA No auxiliary carry
0004 PF Parity Flag PE Parity even PO Parity odd
0001 CF Carry Flag CY Carry NC No carry

The short names of the flag states are displayed when dumping registers and can be entered to
modify the symbolic F register with R. The short names of the flags can be modified by R.

18.4 ?C - Conditionals
In the register dump displayed by the R, T, P and G commands, conditional jumps are displayed
with a notice that shows whether the instruction will cause a jump depending on its condition
and the current register and flag contents. This notice shows either "jumping" or "not jumping"
as appropriate.

The conditional jumps use these conditions: (second column negates)

 jo jno OF
 jc jb jnae jnc jnb jae CF
 jz je jnz jne ZF
 jbe jna jnbe ja ZF||CF
 js jns SF
 jp jpe jnp jpo PF
 jl jnge jnl jge OF^^SF
 jle jng jnle jg OF^^SF || ZF
 j(e)cxz (e)cx==0
 loop (e)cx!=1
 loopz loope (e)cx!=1 && ZF
 loopnz loopne (e)cx!=1 && !ZF

Enter ?F to display a description of the flag names.

226

18.5 ?E - Expressions
Recognized operators in expressions:

| bitwise OR || boolean OR
^ bitwise XOR ^^ boolean XOR
& bitwise AND && boolean AND
>> bit-shift right > test if above
>>> signed bit-shift right < test if below
<< bit-shift left >= test if above-or-equal
>< bit-mirror <= test if below-or-equal
+ addition == test if equal
- subtraction != test if not equal
* multiplication => same as >=
/ division =< same as <=
% modulo (A-(A/B*B)) <> same as !=
** power

Implicit operater precedence is handled in the listed order, with increasing precedence: (Brackets
specify explicit precedence of an expression.)

 boolean operators OR, XOR, AND (each has a different precedence)
 comparison operators
 bitwise operators OR, XOR, AND (each has a different precedence)
 shift and bit-mirror operators
 addition and subtraction operators
 multiplication, division and modulo operators
 power operator

Recognized unary operators: (modifying the next number)

+ positive (does nothing)
- negative
~ bitwise NOT
! boolean NOT
? absolute value
!! convert to boolean

Note that the power operator does not affect unary operator handling. For instance, "- 2 ** 2"
is parsed as "(-2) ** 2" and evaluates to 4.

Although a negative unary and signed bit-shift right operator are provided the expression
evaluator is intrinsically unsigned. Particularly the division, multiplication, modulo and all
comparison operators operate unsigned. Due to this, the expression "-1 < 0" evaluates to zero.

Recognized terms in an expression:

 32-bit immediates
 8-bit registers
 16-bit registers including segment registers (except FS, GS)
 32-bit compound registers made of two 16-bit registers (eg DXAX)
 32-bit registers and FS, GS only if running on a 386+

227

 32-bit variables V00..VFF
 32-bit special variables DCO, DCS, DAO, DAS, DIF, DPI, PPI
 16-bit special variables DPR, DPP, PSP, PPR
 (fuller variable reference in the manual)
 byte/word/3byte/dword memory content (eg byte [seg:ofs], where both the
 optional segment as well as the offset are expressions too)

The expression evaluator case-insensitively checks for names of variables and registers as well
as size specifiers.

Enter ?R to display the recognized register names. Enter ?V to display the recognized variables.

18.6 ?V - Variables
Available lDebug variables:

• V0..VF User-specified usage

• DCO Debugger Common Options

• DAO Debugger Assembler/disassembler Options

The following variables cannot be written:

• PSP Debuggee Process

• PPR Debuggee's Parent Process

• PPI Debuggee's Parent Process Interrupt 22h

• DIF Debugger Internal Flags

• DCS Debugger Common Startup options

• DAS Debugger Assembler/disassembler Startup options

• DPR Debugger Process

• DPP Debugger's Parent Process (zero in TSR mode)

• DPI Debugger's Parent process Interrupt 22h (zero in TSR mode)

Enter ?O to display the options and internal flags.

18.7 ?RE - R Extended
The RUN commands (T, TP, P, G) and the RE command use the RE command buffer to run
commands. Most commands are allowed to be run from the RE buffer. Disallowed commands
include program-loading L, A, E that switches the line input mode, TSR, Q, Y, RE, and further
RUN commands. When the RE buffer is used as input during T, TP, or P with the SILENT
keyword, commands that use the auxbuff are also disallowed and will emit an error noting the
conflict.

RE.LIST shows the current RE buffer contents in a format usable by the other RE commands.
RE.APPEND appends the following commands to the buffer, if they fit. RE.REPLACE appends
to the start of the buffer. When specifying commands, an unescaped semicolon is parsed as a

228

linebreak to break apart individual commands. Backslashes can be used to escape semicolons
and backslashes themselves.

Prefixing a line with an @ (AT sign) causes the command not to be shown to the standard output
of the debugger when run. Otherwise, the command will be shown with a percent sign % or ~%
prompt.

The default RE buffer content is @R. This content is also detected and handled specifically; if
found as the only command the handler directly calls the register dump implementation without
setting up and tearing down the special execution environment used to run arbitrary commands
from the RE buffer.

18.8 ?RUN - Run keywords
T (trace), TP (trace except proceed past string operations), and P (proceed) can be followed by a
number of repetitions and then the keyword WHILE, which must be followed by a conditional
expression.

The selected run command is repeated as many times as specified by the number, or until the
WHILE condition evaluates no longer to true.

After the number of repetitions or (if present) after the WHILE condition the keyword SILENT
may follow. If that is the case, all register dumps done during the run are buffered by the debugger
and the run remains silent. After the run, the last dumps are replayed from the buffer and
displayed. At most as many dumps as fit into the buffer are displayed. (The buffer is currently
8 KiB sized by default, though the /A switch can be specified to init to grow it up to 24 KiB.)

If a number follows behind the SILENT keyword, only at most that many dumps are displayed
from the buffer. The dumps that are displayed are always those last written into the buffer, thus
last occurred.

18.9 ?OPTIONS - Options pages
Enter one of the following commands to get a corresponding help page:

• ?O1 DCO1 - Options

• ?O2 DCO2 - More Options

• ?O3 DCO3 - More Options

• ?O4 DCO4 - Interrupt Hooking Options

• ?O6 DCO6 - More Options

• ?OI DIF - Internal Flags

• ?OA DAO - Assembler/Disassembler Options

18.10 ?O - Options
Available options: (read/write DCO, read DCS)

• 0001 RX: 32-bit register display

• 0002 TM: trace into interrupts

229

• 0004 allow dumping of CP-dependent characters

• 0008 always assume InDOS flag non-zero, to debug DOS or TSRs

• 0010 disallow paged output to StdOut

• 0020 allow paged output to non-StdOut

• 0040 display raw hexadecimal content of FPU registers

• 0100 when prompting during paging, do not use DOS for input

• 0200 (in 86 Mode) do not execute HLT instruction to idle

• 0400 do not idle, the keyboard BIOS idles itself

• 0800 use getinput function for int 21h interactive input

• 1000 in disp_*_size use SI units (kB = 1000, etc). overrides 2000!

• 2000 in disp_*_size use JEDEC units (KB = 1024)

• 4000 enable serial I/O (port 02F8h interrupt 0Bh)

• 8000 disable serial I/O when breaking after 5 seconds Ctrl pressed

• 0001_0000 gg: do not skip a breakpoint (bb or gg)

• 0002_0000 gg: do not auto-repeat

• 0004_0000 T/TP/P: do not skip a (bb) breakpoint

• 0008_0000 gg: do not auto-repeat after bb hit

• 0010_0000 T/TP/P: do not auto-repeat after bb hit

• 0020_0000 gg: do not auto-repeat after unexpectedinterrupt

• 0040_0000 T/TP/P: do not auto-repeat after unexpectedinterrupt

• 0080_0000 S: do not dump data after matches

• 1000_0000 R: do not repeat disassembly

• 2000_0000 R: do not show memory reference in disassembly

• 4000_0000 quiet command line buffer input

• 8000_0000 quiet command line buffer output

More options: (read/write DCO2, read DCS2)

• 0001 DB: show header

• 0002 DB: show trailer

• 0010 DW: show header

• 0020 DW: show trailer

230

• 0100 DD: show header

• 0200 DD: show trailer

• 0800 use getinput function for int 21h interactive input in DPMI

• 1000 H: stay compatible to MS-DOS Debug

• 2000 idle and check for Ctrl-C in getc

• 4000 idle and check for Ctrl-C in getc in DPMI

• 8000 T/TP/P/G: cancel run after RE command buffer execution

• 01_0000 N: operate in MS Debug style instead of K command alike

• 02_0000 N: capitalise command line tail

• 04_0000 explicit 0-length ranges operate in partial MS Debug style

• 08_0000 R: 16-bit 80-column register dump in MS Debug style

• 10_0000 R: do variable prompts in MS Debug style

• 20_0000 R: do variable prompts with underscore separator

• 40_0000 display linebreak before R command register dump

• 8000_0000 do not execute HLT to idle in PM

More options: (read/write DCO3, read DCS3)

• 0001 T: do not page output

• 0002 TP: do not page output

• 0004 P: do not page output

• 0008 G: do not page output

• 0100 T/TP/P: modify paging for silent dump

• 0200 T/TP/P: if 0100 set: turn paging on, else off

• 01_0000 R: highlight changed digits (needs ANSI for DOS output)

• 02_0000 R: highlight escape sequences to int 10h, else video attributes

• 04_0000 R: highlight changed registers (overrides 01_0000)

• 08_0000 R: include highlighting of EIP

• 10_0000 set PM ss B bit

• 20_0000 break on entering Protected Mode

• 0100_0000 highlight prefix/suffix in getinput if text parts are not visible

• 0200_0000 do not call int 2F.1680 for idling

231

• 0400_0000 delay for a tick before writing breakpoints

• 0800_0000 do not call other lDebug instance's AMIS services

• 1000_0000 disable auto-repeat

• 2000_0000 check int 16h buffer for Control-C if inputting from int 16h

• 4000_0000 call DOS service 0Bh to check for Control-C

• 8000_0000 when Q command is used while TSR, leave TF as is

More options: (read/write DCO4, read DCS4)

• 0002 enable interrupt 2Fh hook while in 86 Mode

• 0004 enable interrupt 8 hook

• 0008 enable interrupt 2Dh hook

• 0010 enable 86 Mode fault interrupt hooks

• 0001_0000 force serial interrupt unhooking

• 0002_0000 force interrupt 2Fh unhooking

• 0004_0000 force interrupt 8 unhooking

• 0008_0000 force interrupt 2Dh unhooking

• 0010_0000 force interrupt 0Dh unhooking

• 0020_0000 force interrupt 0Ch unhooking

• 0100_0000 force interrupt 0 unhooking

• 0200_0000 force interrupt 1 unhooking

• 0400_0000 force interrupt 3 unhooking

• 0800_0000 force interrupt 6 unhooking

• 1000_0000 force interrupt 18h unhooking

• 2000_0000 force interrupt 19h unhooking

More options: (read/write DCO6, read DCS6)

• 0001 enable video screen swapping

• 0002 keep video screen when disabling swapping

• 0010 read key from interrupt 16h when swapping (V command)

• 0100 enable debug mode (and BU command)

• 0200 use ROM-BIOS output even when DOS available

• 0400 load and write .EXE and .COM files like flat .BIN files (/F+)

232

• 0800 for loading flat .BIN files set up Stack Segment != PSP (/E+)

• 1000 enable 40-column friendly mode

• 2000 in 40-column mode indent odd D lines more

• 4000 in 40-column mode display dashes at half of D length

• 01_0000 allow to share serial IRQ handler

• 0100_0000 use ROM-BIOS I/O even when DOS available (disables script file read)

• 2000_0000 display flags in style 2 for R command register dump

• 4000_0000 display flags in style 3 for R command register dump

• 8000_0000 linebreak before R register dump if not column 0 (int 10h only)

Internal flags: (read DIF)

• 00_0001 Int25/Int26 packet method available

• 00_0002 Int21.7305 packet method available

• 00_0004 VDD registered and usable

• 00_0008 internal flag for paged output

• 00_0010 DEBUG's input isn't StdIn

• 00_0020 DEBUG's input is a file

• 00_0040 DEBUG's output isn't StdOut

• 00_0080 DEBUG's output is a file

• 00_1000 state of debuggee's A20

• 00_2000 state of debugger's A20 (not implemented: same as previous)

• 00_4000 debugger booted independent of a DOS

• 00_8000 CPU is at least a 386 (32-bit CPU)

• 01_0000 internal flag for tab output processing

• 02_0000 running inside NTVDM

• 10_0000 internal flag for paged output

• 40_0000 in TSR mode (detached debugger process)

• 0100_0000 running inside dosemu

• 0400_0000 T/TP/P: while condition specified

• 0800_0000 TP: P specified (proceed past string ops)

• 1000_0000 T/TP/P: silent mode (SILENT specified)

233

• 2000_0000 T/TP/P: silent mode is active, writing to silent buffer

Available assembler/disassembler options: (read/write DAO, read DAS)

• 01 Disassembler: lowercase output

• 02 Disassembler: output blank behind comma

• 04 Disassembler: output addresses in NASM syntax

• 08 Disassembler: lowercase referenced memory location segreg

• 10 Disassembler: always show SHORT keyword

• 20 Disassembler: always show NEAR keyword

• 40 Disassembler: always show FAR keyword

• 80 Disassembler: NEC V20 repeat rules (for segregs)

• 0100 Disassembler: 40-column friendly mode (only 4 bytes machine code per line)

• 0200 Disassembler: do not indent disassembly operands

• 0400 Disassembler: MS Debug style opcode field width

• 1000 Disassembler: access data in a16 referenced memory operand

• 2000 Disassembler: access data in a32 referenced memory operand

• 4000 Disassembler: simulate repeated a16 scas/cmps string operation

• 8000 Disassembler: simulate repeated a32 scas/cmps string operation

• 01_0000 Disassembler: hide needed MODRM keywords

• 02_0000 Disassembler: use LOOP rel, (E)CX rather than LOOPW/LOOPD

• 04_0000 Disassembler: always display MODRM keyword even if not needed

18.11 ?BOOT - Boot loading
Boot loading commands:

• BOOT LIST HDA

• BOOT DIR [partition] [dirname]

• BOOT READ|WRITE [partition] segment [[HIDDEN=sector] sector] [count]

• BOOT QUIT [exits dosemu or shuts down using APM]

• BOOT [PROTOCOL=SECTOR] partition

• BOOT PROTOCOL=proto [opt] [partition] [filename1] [filename2] [cmdline]

• the following partitions may be specified:

• HDAnum first hard disk, num = partition (1-4 primary, 5+ logical)

234

• HDBnum second hard disk (etc), num = partition

• HDA first hard disk (only valid for READ|WRITE|PROTOCOL=SECTOR)

• FDA first floppy disk

• FDB second floppy disk (etc)

• LDP partition the debugger loaded from

• YDP partition the most recent Y command loaded from

• SDP last used partition (default if no partition specified)

• filename2 may be double-slash // for none

• cmdline is only valid for lDOS, RxDOS.2, RxDOS.3 protocols

• files' directory entries are loaded to 500h and 520h

Available protocols: (default filenames, load segment, then entrypoint)

• LDOS LDOS.COM or L[D]DEBUG.COM at 200h, 0:400h

• FREEDOS KERNEL.SYS or METAKERN.SYS at 60h, 0:0

• DOSC IPL.SYS at 2000h, 0:0

• EDRDOS DRBIO.SYS at 70h, 0:0

• MSDOS6 IO.SYS + MSDOS.SYS at 70h, 0:0

• MSDOS7 IO.SYS at 70h, 0:200h

• IBMDOS IBMBIO.COM + IBMDOS.COM at 70h, 0:0

• DRDOS IBMBIO.COM + IBMDOS.COM at 70h, 0:0

• NTLDR NTLDR at 2000h, 0:0

• BOOTMGR BOOTMGR at 2000h, 0:0

• RXDOS.0 RXDOSBIO.SYS + RXDOS.SYS at 70h, 0:0

• RXDOS.1 RXBIO.SYS + RXDOS.SYS at 70h, 0:0

• RXDOS.2 RXDOS.COM at 70h, 0:400h

• RXDOS.3 RXDOS.COM at 200h, 0:400h

• CHAIN BOOTSECT.DOS at 7C0h, -7C0h:7C00h

• SECTOR (default) load partition boot sector or MBR

• SECTORALT as SECTOR, but entry at 07C0h:0

Available options:

• MINPARA=num load at least that many paragraphs

235

• MAXPARA=num load at most that many paragraphs (0 = as many as fit)

• SEGMENT=num change segment at that the kernel loads

• ENTRY=[num:]num change entrypoint (CS (relative) : IP)

• BPB=[num:]num change BPB load address (segment -1 = auto-BPB)

• CHECKOFFSET=num set address of word to check, must be even

• CHECKVALUE=num set value of word to check (0 = no check)

Boolean options: [opt=bool]

• SET_DL_UNIT set dl to load unit

• SET_BL_UNIT set bl to load unit

• SET_SIDI_CLUSTER set si:di to first cluster

• SET_DSSI_DPT set ds:si to DPT address

• PUSH_DPT push DPT address and DPT entry address

• DATASTART_HIDDEN add hidden sectors to datastart var

• SET_AXBX_DATASTART set ax:bx to datastart var

• SET_DSBP_BPB set ds:bp to BPB address

• LBA_SET_TYPE set LBA partition type in BPB

• MESSAGE_TABLE provide message table pointed to at 1EEh

• SET_AXBX_ROOT_HIDDEN set ax:bx to root start with hidden sectors

• NO_BPB do not load BPB

• SET_DSSI_PARTINFO load part table to 600h, point ds:si + ds:bp to it

• CMDLINE pass a kernel command line (recent FreeDOS extension)

18.12 ?BUILD - lDebug build (only revisions)
lDebug (YYYY-MM-DD)
Source Control Revision ID: hg xxxxxxxxxxxx (vvvv ancestors)
Uses yyyyyyyy: Revision ID hg zzzzzzzzzzzz (www ancestors)
[etc]

18.13 ?B - lDebug build (with options)
lDebug (YYYY-MM-DD)
Source Control Revision ID: hg xxxxxxxxxxxx (vvvv ancestors)
Uses yyyyyyyy: Revision ID hg zzzzzzzzzzzz (www ancestors)
[etc]

DI command

236

DM command
D string commands
S match dumps line of following data
RN command
Access SDA current PSP field
Load NTVDM VDD for sector access
X commands for EMS access
RM command and reading MMX registers as variables
Expression evaluator
 Indirection in expressions
Variables with user-defined purpose
Debugger option and status variables
PSP variables
Conditional jump notice in register dump
TSR mode (Process detachment)
Boot loader
Permanent breakpoints
Intercepted interrupts: 00, 01, 03, 06, 18, 19
Extended built-in help pages

18.14 ?X - EMS commands
Expanded memory (EMS) commands:
 Allocate XA count
 Deallocate XD handle
 Map memory XM logical-page physical-page handle
 Reallocate XR handle count
 Show status XS

18.15 ?SOURCE - lDebug source reference
The original lDebug sources can be obtained from the repo located at
https://hg.pushbx.org/ecm/ldebug (E. C. Masloch's repo)

Releases of lDebug are available via the website at https://pushbx.org/ecm/web/#projects-
ldebug

The most recent manual is hosted at https://pushbx.org/ecm/doc/ in the files ldebug.htm,
ldebug.txt, and ldebug.pdf

18.16 ?L - lDebug license
lDebug - libre 86-DOS debugger

• Copyright (C) 1995-2003 Paul Vojta

• Copyright (C) 2008-2024 E. C. Masloch

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

All contributions by Paul Vojta or E. C. Masloch to the debugger are available under a choice

237

https://hg.pushbx.org/ecm/ldebug
https://pushbx.org/ecm/web/#projects-ldebug
https://pushbx.org/ecm/web/#projects-ldebug
https://pushbx.org/ecm/doc/
https://pushbx.org/ecm/doc/ldebug.htm
https://pushbx.org/ecm/doc/ldebug.txt
https://pushbx.org/ecm/doc/ldebug.pdf

of three different licenses. These are the Fair License, the Simplified 2-Clause BSD License, or
the MIT License.

This is the license and copyright information that applies to lDebug; but note that there have
been substantial contributions to the code base that are not copyrighted (public domain).

238

Section 19: Comparison of lDebug to MS-DOS
Debug

This section lists some benefits of lDebug, as compared to MSDebug. It originates in the
MSDebug manual. MSDebug is based on the Debug of the 2018 free software release of MS-
DOS version 2.

First, there are some differences between MSDebug and the original MS-DOS Debug which
make MSDebug more similar to lDebug:

• K command to modify only the internal buffers for the program load filename, the PSP
command line tail, and the PSP FCBs

• Child process allocated using interrupt 21h function 48h and initialised using function 55h

• After termination of debuggee a new child process is created

• Restores interrupt 1 and 3 vectors (similar to lDDebug)

• BU command like lDDebug's

• .HEX file read ends on NUL byte (0), EOF byte (1Ah), or End Of File

• Bugfix: Move command M will correctly move forwards or backwards based on the linear
address, fixing overlapping moves in which the segments differ in the opposite way to the
linear addresses

Here's the advantages of lDebug as compared to MSDebug:

• Expression evaluator can be used whereever a number is to be parsed

• D, U, T, TP, P, G commands can be repeated with autorepeat

• Permanent breakpoints (B commands)

• G command can re-use prior breakpoints list with G AGAIN command (or autorepeat)

• Several variables beyond the 16-bit registers to control the debugger or store calculation
results

• Paging to allow reading longer outputs

• 686 level assembler and disassembler

• DPMI build lDebugX for debugging DPMI clients, supporting 32-bit offsets in segments

• InDOS mode to switch to ROM-BIOS video and keyboard I/O rather than DOS's standard
output and input

239

https://pushbx.org/ecm/doc/msdebug.htm#ldebug-ad
https://pushbx.org/ecm/doc/msdebug.htm#ldebug-ad

• Line editor and line history (if not using the DOS line input function)

• Can be boot loaded for debugging Real/Virtual 86 Mode kernels

• Can be installed as a device driver in CONFIG.SYS

• Script for lDebug file reading using the Y command

• Serial I/O mode

• Conditional tracing for the T, TP, and P commands using a condition after a WHILE
keyword

• Buffered tracing for T, TP, and P using a SILENT keyword

• T defaults to proceeding past software interrupt calls, can be modified using Trace Mode
(TM command)

• TP command which proceeds past repeated string instructions

• DM command to list MCBs

• DI command to dump interrupt handler chains

• DW and DD commands to dump data in words or dwords

• 32-bit numeric handling

• F and S commands can use a memory source instead of a list, using a RANGE keyword

• H command can display an expression result in hexadeximal, decimal, or one arbitrary base
of choice

• I and O commands have IW/OW and ID/OD variants for word and doubleword port I/O

• R command can be switched to display 32-bit and 386 registers

• Machine type can be set to make the assembler and disassembler display when the machine
does not support an instruction

• QA command can be used to try to terminate an attached process

• S command can search backwards using the REVERSE keyword

• Provides a number of online help pages

• RN command to dump 8087 registers

• RM command to dump MMX registers, and variables to read and write them

• RE command buffer to run commands from T, TP, P, or G dump calls

• RC command buffer to run commands at startup or group several commands later on

• Numeric inputs can be specified with a hash sign ‘#’ modifier to enter in arbitrary numeric
bases

• Access variables and VALUE IN constructs to detect memory accesses before they are
actually carried out (requring to trace instructions)

240

• TSR and ATTACH commands to detach from or attach to a process

• IF command to conditionally run another command

• Timer and AMIS interrupt hooks (optional)

Furthermore, lDebug can be built using the free software Netwide Assembler, rather than
relying on a binary-only Microsoft Macro Assembler. (The assembler executable shipped with
MSDebug is technically free, but it does not have sources.)

However, there are some disadvantages to lDebug as well:

• Memory use and executable size can easily reach as much as ten times that of MSDebug

• Less compatibility to original MS-DOS Debug

• Performance may be worse

• May require some MS-DOS version 3 or version 5 features

241

Section 20: Test Reference

This chapter lists all tests in the test suite.

20.1 test_beep
Runs the command ‘... invalid command ’ and checks that the returned error carat
display contains a bell codepoint (byte 07h, U+0007).

20.2 test_build
Checks the ‘?build ’ and ‘?version ’ commands.

20.3 test_rh
Checks the Register dump History mode. Includes subtests for many RH commands. Refer to
section 10.38.

20.4 test_dt
Checks the DT command text table and the DT command to dump byte values' corresponding
texts. Refer to section 10.17.

20.5 test_rr_status
Checks that the R command's jumping notices are correct. Also checks for flag status display,
referenced memory contents display, and the ‘[needs 386] ’ machine requirement display.
Includes subtests for many conditions. Refer to section 10.37.

20.6 test_aa_basic
Tests the assembler's output. Includes many subtests, some of which are expected failures.

20.7 test_rr_basic
Tests the R command to display and modify variables, either debugger variables or memory
indirect variables. Includes subtests for a number of different commands. Some of the tests also
use complex expressions to test the expression evaluator. Some of the subtests contain no-op
commands (commented out as ‘; nothing ’) that only check an additional result of a prior
subtest.

20.8 test_misc
Miscellaneous subtests:

• S command tests

242

• D command tests, including D TOP, dollar sign addresses, and pointer type expressions

• Reading variables using the R command, up to DCO7 and DIF7 (with expected failures
for DCO8 and DIF8)

• Calculations using the H command and various expression evaluator constructs

• Reading debugger variables (PSP variables and registers) using the H command

• Reading some compound variables using H commands

• Checking the equality of some compound variables

• Checking value limits on assigning to AX or an indirect word variable

Further miscellaneous tests include:

• Autorepeat for T command, without or with blanks

• Disable autorepeat

• H command expression evaluation overflow

• Register change highlighting

• Line editor history

• Line editor

• Sleep command

• Paging of long command output

• C command

• T/TP/P commands

• F command with overlong pattern

• F command with a range instead of list pattern

• S command with range, too long range, too long list

20.9 test_timeout
Instructs the debugger to sleep so long that the test tear down handler will terminate the debugger
process.

20.10 test_int2D_unhook
Installs the debugger's AMIS handler (int 2Dh handler) then installs a tiny handler on top of it,
testing how attempting to unhook the debugger's handler works in this case. The tiny handler
is first of the form ‘90 EA offset segment 00 00 ’ (no IISP header detected) and
then of the form ‘90 EA offset segment "KB" ’ (uninstalled iHPFS style IISP header
detected).

This test requires running under a DOS.

243

20.11 test_bb_gg
Tests permanent (bb) and temporary (gg) breakpoints.

20.12 test_bb_fill
Tests permanent breakpoint setup, listing, and overflows of structures.

20.13 test_access_var
Checks for access variables working. Refer to section 12.19.

20.14 test_dpmimini
Enters Protected Mode using a small DPMI test case.

First, if need be a DPMI host may be run. Next, the client executable is loaded. Subsequently
the debugging hint in text form is searched within the loaded program. It is checked that PM is
entered successfully.

The fix for a bug in the R command is tested next, except under lDDebugX where a failure
would crash the debugger. The PM interrupts hooked by lDebugX are checked, except when
lDDebugX is used. Several subtests check PSP variables.

Finally, the return to 86 Mode via client process termination is checked.

This test requires running under a DOS, for a DPMI host to be available, and for an lDebugX
build to be used (detected by the "x" in the build name).

20.15 test_dpmioffs
This test has a setup similar to test_dpmimini. Two different breakpoints are detected in the
debugging hint texts. At both of the breakpoints, several C commands are tested. One point of
the tests is to insure that 32-bit offsets in part of an expression such as memory indirection or a
LINEAR expression do not set the 32-bit offset status for the entire expression's caller.

This test requires running under a DOS, for a DPMI host to be available, and for an lDebugX
build to be used (detected by the "x" in the build name).

20.16 test_dpmialoc
This test has a setup similar to test_dpmimini. It checks that when a permanent breakpoint is set
in a DPMI allocation (beyond 1088 KiB) and then the debugger is entered in 86 Mode via mode
switch (not by terminating the client) and then an interrupt instruction is to be disassembled,
the debugger will not have losts its Extra Segment and the disassembly operand stack special
opcode scan will succeed.

This is based on a bugfix in the mode switching done by the debugger in this circumstance,
added as a test case afterwards, both in 2022 April.

This test requires running under a DOS, for a DPMI host to be available, and for an lDebugX
build to be used (detected by the "x" in the build name).

244

https://hg.pushbx.org/ecm/ldebug/rev/b2212e4d65fb
https://hg.pushbx.org/ecm/ldebug/rev/e49b20df1831
https://hg.pushbx.org/ecm/ldebug/rev/abc7c761c83d

20.17 test_missing_executable
This test tries to load nonexisting executables specified to the N command followed by an L
command. First a file should not be found and then a path.

This test requires running under a DOS.

20.18 test_error_executable
This test tries to load a corrupt executable specified to the N command followed by an L
command. The MZ executable header specifies a too large image for any 86 Mode operating
system in this executable.

This test requires running under a DOS.

20.19 test_load_boot
This checks that several BOOT commands work.

An lDOS protocol load is attempted to run without a failure, and its entrypoint address
(200h:400h) is checked. A check value mismatch is forced. The RxDOS.3 protocol load is
attempted with the default filename, which should not be found. A FreeDOS protocol load is
attempted to run without a failure, and its entrypoint address (60h:0) is checked. A boot directory
listing is attempted and the presence of the debugger executable and startup script is matched.

The boot sector of the debugger diskette is loaded to segment 1000h and it is checked that the
informational ‘FAT12’ identifier shows up exactly once in the sector. The 55h, AAh signature
is checked in the sector. The boot sector is read repeatedly to segment 1020h with implied start
sector and length, explicit start sector but implied length, and all explicit parameters. The sectors
are matched with the first read. Also, it is insured that a sentinel byte after the 512 Bytes for the
subsequent reads does not change.

This test requires running without a DOS.

20.20 test_yy
Tests Y commands to read Script for lDebug files.

A simple script is tested first. Then 20 nested scripts are tested, expecting an error that the nesting
is too deep but still executing all commands from the opened files in the correct order. Then 3
nested scripts are tested, which should not cause an error.

Subsequently, sleeping within nested scripts is tested. Further, cancelling a running command
with Control-C (codepoint U+0003) is tested, utilising the sleeping scripts. The first cancellation
is done with IOL equal to zero, to cancel only the sleep command and none of the Scripts for
lDebug. (Refer to section 12.9.6.) The second involves IOL equal to one, cancelling the sleep
command as well as one script level. The third involves IOL equal to one again but with two
Control-C codes sent from the terminal, twice cancelling one sleep command and one script
level. The fourth cancellation uses IOL equal to two, cancelling the sleep and two script levels.

A further SLD tests calling subfunctions (labels) within the same SLD file. A final SLD tests
visibility of commands in a Script for lDebug using the ‘@’ prefix as well as setting YSF flag
4000h to hide some of the commands. (Refer to section 12.15.1.)

245

20.21 test_double_ctrlc
This test sends a double Control-C from the serial terminal to the debugger. At this point the
debuggee is running in an idle loop so that the double Control-C can act as a breakpoint. In order
to work, the timer interrupt 8 is hooked by the debugger.

After the debugger breaks out of the loop, the code segment is matched against the debuggee
code segment. If it matches and the offset is plausible, the test is considered finished. Otherwise,
the debugger attempts to trace-proceed out of the current interrupt handler until it has executed
aniret or retf imm16 instruction and checks the segment for the debuggee code segment
after.

20.22 test_eee_interactive
This tests the interactive enter mode (section 10.18).

20.23 test_rc
This tests the RC (command line) buffer and execution from it. First a single R command is
written and ran. Then two more R commands are appended and the RC buffer is ran again.

Then a small loop is written into the RC buffer using IF and GOTO commands, as well as labels.
The display of the commands themselves is disabled by using ‘@’ prefixes. The correct amount
of iterations as well as hiding of commands is tested.

A longer loop is ran next, but the loop is placed into the RE buffer instead, with the RC buffer
containing only an ‘RE’ command. The RCLIMIT variable (section 12.6.3) is set so low that it
would abort the loop if the RE buffer commands were to be counted against it.

A similar construct is used next, except that the loop is in a Script for lDebug file and the RC
buffer contains a Y command to load this SLD.

20.24 test_ext_extlib
Runs the help of the extlib Extension for lDebug. Both on its own, with the long descriptions,
and with the wide list of ELDs. It is checked that at least 40 ELDs are listed.

20.25 test_ext_ldmem
Runs the ldmem Extension for lDebug. The MEM and ELD keywords are tested by directly
running the ELD. The ELD noun should display the transient ELD.

Then the ELD is installed residently. The ELD noun is used first. It is checked that the
resident ELD is displayed. Next, COMMANDHANDLER, INJECTHANDLER, STACK, and
HISTORY nouns are ran. Finally the resident ELD is uninstalled.

20.26 test_ext_aformat
Installs the aformat Extension for lDebug then tests it by assembling several instructions.

20.27 test_ext_checksum
Installs the checksum Extension for lDebug and runs it on several data blocks. The results are
checked.

246

20.28 test_ext_list
Runs the transient list Extension for lDebug. The first run is with an empty command line tail.
As only the extlib.eld is known to be available it is specified as the ELD file to list for the second
run. Contents and format of the output are tested.

20.29 test_ext_amitsrs
This runs the Extension for lDebug that lists multiplexers installed according to the Alternate
Multiplex Interrupt Specification (AMIS). To make sure at least one multiplexer is installed,
this test runs ‘install amis ’ initially, which installs the debugger's AMIS handler.

The amitsrs command is run as is, and then with the keywords ‘int ’, ‘ mpx’, and
‘verbose ’. In the interrupts display it is insured that at least one multiplexer hooks interrupt
2Dh (necessary) and interrupt 3 (always true for normal lDebug builds).

20.30 test_ext_reclaim
In this test, a resident ldmem Extension for lDebug is installed. It is then tested that running the
help for extlib.eld leaves a transient ELD installed. Finally, the reclaim ELD is used to reclaim
this transient ELD. (Reclamation is built-in to the debugger's ELD loader as well, however this
will not reclaim the last loaded ELD when it returns control to the debugger.)

20.31 test_ext_amount
This test installs the amount Extension for lDebug, which provides the ELDAMOUNT variable.
It is checked that this variable reads as at least 2, one each for the LINKCALL ELD and
the amount ELD. Then an ldmem.eld is installed and it is checked that the value in the
ELDAMOUNT variable increments.

20.32 test_ext_alias
Tests the alias Extension for lDebug. Installs the ELD, then runs a list command, adds an alias,
lists the alias, runs the alias, and deletes the alias again.

20.33 test_ext_dosseek
To test the dosseek Extension for lDebug, a small stub is assembled first to open a file handle.
The extlib.eld file is opened, as it always exists. Then the dosseek.eld is used to get the current
seek, set it to 4096, get it again, and then set it to the EOF. The final seek is checked to match
the filesize. Finally, it is attempted to get the seek for file handle #19 (valid process handle but
closed) and FFFF (never a valid process handle) and the error messages are checked.

This test requires running under a DOS.

20.34 test_ext_history
Installs the history Extension for lDebug, and checks that its show and clear commands work.

20.35 test_ext_amismsg
Installs the debugger's AMIS handler and the amismsg Extension for lDebug. Several small
handlers that pass messages to AMIS function 40h are assembled. An overflow is tested to

247

truncate a message that is too long, along with returning a different status in AL. AMIS function
41h is tested as well.

20.36 test_ext_amiscmd
Installs the debugger's AMIS handler and the amiscmd Extension for lDebug. An rvm command
is injected using AMIS function 43h. Next the same command is injected again but with all
flags in CX set, which should be rejected. After this, four commands are injected at once. Then
16 commands are injected at once, padded to the maximum length with blanks. This should
overflow the ELD's buffer. Finally two differing commands are injected and it is insured that
the order of injection matches the order of the calls into the ELD.

20.37 test_ext_amisoth
Installs the debugger's AMIS handler and the amisoth Extension for lDebug. The AMIS function
42h is tested. The status returned in AL is insured to be FFh. The segment returned in DX is
matched to equal the Debugger PSP. The ELD link info header (refer to section 16.3) is tested
a little. The signature is matched as E1D1h, the use link hash word is matched as 1 or 0, and the
amount of data and code links are both matched to be at least 64 and at most 256.

248

Section 21: Additional usage conditions

The program executables can be compressed with a choice of different compressors. The files
then contain a decompression stub. Some of these stubs have their own usage conditions. The
following stub usage conditions apply, if one of these stubs is used.

One of the Extensions for lDebug, dbitmap.eld, contains a font copied from the GLaBIOS
project. Its license follows.

21.1 GLaBIOS font license (used for dbitmap.eld)
Font bitmaps from "VileR", (CC BY-SA 4.0)

https://int10h.org/oldschool-pc-fonts/

Copied from https://github.com/640-
KB/GLaBIOS/blob/b60b2549372e30447ffa454d4ae487390f91d509/src/GLABIOS.ASM#L10975
with the backslash comment fixed to avoid a NASM misfeature.

According to https://int10h.org/oldschool-pc-fonts/readme/#legal_stuff this font insofar as
it is copyrightable is available under: Creative Commons Attribution-ShareAlike 4.0
International License.

21.2 BriefLZ depacker usage conditions
BriefLZ - small fast Lempel-Ziv

8086 Assembly lDOS iniload payload BriefLZ depacker

Based on: BriefLZ C safe depacker

Copyright (c) 2002-2016 Joergen Ibsen

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

249

https://int10h.org/oldschool-pc-fonts/
https://github.com/640-KB/GLaBIOS/blob/b60b2549372e30447ffa454d4ae487390f91d509/src/GLABIOS.ASM#L10975
https://github.com/640-KB/GLaBIOS/blob/b60b2549372e30447ffa454d4ae487390f91d509/src/GLABIOS.ASM#L10975
https://int10h.org/oldschool-pc-fonts/readme/#legal_stuff
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

21.3 LZ4 depacker usage conditions
8086 Assembly lDOS iniload payload LZ4 depacker

by E. C. Masloch, 2018

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

21.4 Snappy depacker usage conditions
8086 Assembly lDOS iniload payload Snappy depacker

by E. C. Masloch, 2018

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

21.5 Exomizer depacker usage conditions
8086 Assembly lDOS iniload payload exomizer raw depacker

by E. C. Masloch, 2020

Copyright (c) 2005-2017 Magnus Lind.

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented * you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment in
the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any distribution.

21.6 X compressor depacker usage conditions
MIT License

Copyright (c) 2020 David Barina

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

250

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

21.7 Heatshrink depacker usage conditions
8086 Assembly lDOS iniload payload heatshrink depacker

by E. C. Masloch, 2020

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

21.8 Lzd usage conditions
Lzd - Educational decompressor for the lzip format

Copyright (C) 2013-2019 Antonio Diaz Diaz.

This program is free software. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

21.9 LZO depacker usage conditions
8086 Assembly lDOS iniload payload LZO depacker

by E. C. Masloch, 2020

Usage of the works is permitted provided that this instrument is retained with the works, so that
any entity that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

251

21.10 LZSA2 depacker usage conditions

8086 Assembly lDOS iniload payload LZSA2 depacker

by E. C. Masloch, 2021

based on:

decompress_small.S - space-efficient decompressor implementation for 8088

Copyright (C) 2019 Emmanuel Marty

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

21.11 aPLib depacker usage conditions

8086 Assembly lDOS iniload payload aPLib depacker

by E. C. Masloch, 2021

based on:

aplib_8088_small.S - size-optimized aPLib decompressor for 8088 - 145 bytes

Copyright (C) 2019 Emmanuel Marty

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

252

21.12 bzpack depacker usage conditions
8086 Assembly lDOS iniload payload bzpack depacker

by E. C. Masloch, 2021

BSD 2-Clause License

Copyright (c) 2021, Milos Bazelides

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

253

Source Control Revision ID

hg f6cb98772527, from commit on at 2025-07-26 13:08:01 +0200

If this is in ecm's repository, you can find it at
https://hg.pushbx.org/ecm/ldebug/rev/f6cb98772527

254

https://hg.pushbx.org/ecm/ldebug/rev/f6cb98772527

	lDebug manual
	Contents
	Section 1: Overview and highlights
	1.1 Quick start for reading this manual
	1.2 Some tips for using the debugger

	Section 2: News
	2.1 Release 10 (future)
	2.2 Release 9 (2024-12-21)
	2.3 Release 8 (2024-03-08)
	2.4 Release 7 (2024-02-16)
	2.5 Release 6 (2023-08-26)
	2.6 Release 5 (2023-03-08)
	2.7 Release 4 (2022-03-08)
	2.8 Release 3 (2021-08-15)
	2.9 Release 2 (2021-05-05)
	2.10 Release 1 (2021-02-15) and earlier

	Section 3: Building the debugger
	3.1 Components for building
	3.2 How to build
	3.2.1 How to build the mktables program and the debugger tables
	3.2.2 How to build the instsect application
	3.2.3 How to prepare the test suite

	3.3 Build options

	Section 4: Getting started with the release
	Section 5: Invoking the debugger
	5.1 Invoking the debugger in boot loaded mode
	5.2 Invoking the debugger as an application
	5.3 Invoking the debugger as a device driver
	5.4 Invoking the test suite

	Section 6: Interface Reference
	6.1 Interface Output
	6.2 Interface Input
	6.3 Enabling serial I/O
	6.4 Register dumping
	6.5 Memory dumping
	6.6 Disassembly
	6.7 Loading the debuggee
	6.8 Running the debuggee
	6.9 Help

	Section 7: Debugging the debugger itself
	7.1 Initialising the debuggable debugger
	7.2 Sectioning overview
	7.3 Debugging ELDs
	7.3.1 Using the offset hint to debug ELDs
	7.3.1.1 Using the hint ELDs

	7.3.2 Using houdinis to debug ELDs
	7.3.3 ELD examples

	Section 8: Parameter Reference
	8.1 Number
	8.2 Address
	8.3 Range
	8.4 Range with LINES keyword allowed
	8.5 List
	8.6 List or range
	8.7 Keyword
	8.8 Index
	8.9 Segment
	8.10 Breakpoint
	8.11 Label
	8.12 Port
	8.13 Drive
	8.14 Sector
	8.15 Condition
	8.16 Register
	8.17 Command
	8.18 ID
	8.19 Filename or pathname
	8.20 Command line tail

	Section 9: Expression Reference
	9.1 Literals
	9.2 String literals
	9.3 Variables
	9.4 Indirection
	9.5 Parentheses
	9.6 LINEAR keyword
	9.7 DESCTYPE keyword
	9.8 VALUE IN construct
	9.8.1 VALUE IN construct keywords

	9.9 Conditional ?? :: construct
	9.10 Expression side effects

	Section 10: Command Reference
	10.1 Empty command - Autorepeat
	10.2 ? command
	10.3 : prefix - GOTO label
	10.4 . (dot) command - Immediate assembler
	10.5 A command - Assemble
	10.6 ATTACH command - Attach to process (Leave TSR mode)
	10.7 B commands - Permanent breakpoints
	10.7.1 BP command - Set breakpoint
	10.7.2 BI command - Set breakpoint ID
	10.7.3 BW command - Set breakpoint condition
	10.7.4 BO command - Set breakpoint preferred offset
	10.7.5 BN command - Set breakpoint number
	10.7.6 BC command - Clear breakpoint
	10.7.7 BD command - Disable breakpoint
	10.7.8 BE command - Enable breakpoint
	10.7.9 BT command - Toggle breakpoint
	10.7.10 BS command - Swap breakpoint
	10.7.11 BL command - List breakpoints

	10.8 BU command - Break Upwards
	10.9 BOOT commands - Boot loading support
	10.9.1 BOOT PROTOCOL= command
	10.9.1.1 Specify protocol
	10.9.1.2 Altering protocol parameters
	10.9.1.3 Specifying protocol partition
	10.9.1.4 Specifying protocol filenames
	10.9.1.5 Specifying protocol command line
	10.9.1.6 Boot load protocol compatibilities
	10.9.1.6.1 FreeDOS
	10.9.1.6.2 DR-DOS
	10.9.1.6.3 IBMDOS and MS-DOS 6
	10.9.1.6.4 MS-DOS 7

	10.9.1.7 Boot load protocol compatibilities additions
	10.9.1.7.1 FreeDOS
	10.9.1.7.2 DR-DOS
	10.9.1.7.3 IBMDOS and MS-DOS 6

	10.9.2 BOOT LIST command
	10.9.3 BOOT DIR command
	10.9.4 BOOT READ and BOOT WRITE commands
	10.9.5 BOOT QUIT command

	10.10 C command - Compare memory
	10.11 COUNT command - Count list length
	10.12 D command - Dump memory
	10.13 DI command - Dump Interrupts
	10.14 DM command - Dump MCBs
	10.15 DZ/D$/D#/DW# commands - Dump strings
	10.16 D.A/D.D/D.B/D.L/D.T commands - Descriptor modification
	10.16.1 D.A command - Allocate descriptor
	10.16.2 D.D command - Deallocate descriptor
	10.16.3 D.B command - Set descriptor base
	10.16.4 D.L command - Set descriptor limit
	10.16.5 D.T command - Set descriptor type

	10.17 DT command - Dump text table
	10.18 E command - Enter memory
	10.19 EXT command - Load and run an Extension for lDebug
	10.19.1 Current ELDs

	10.20 F command - Fill memory
	10.21 G command - Go
	10.22 GOTO command - Control flow branch
	10.23 H command - Hexadecimal add/subtract values
	10.24 I command - Input from port
	10.25 IF command - Control flow conditional
	10.26 INSTALL command - Install optional features
	10.27 L command - Load Program
	10.28 L command - Load Sectors
	10.29 M command - Move memory
	10.30 M command - Set Machine mode
	10.31 N command - Set program Name
	10.32 O command - Output to port
	10.33 P command - Proceed
	10.34 Q command - Quit
	10.35 QA command - Quit attached process
	10.36 QB command - Quit and break
	10.37 R command - Display and set Register values
	10.37.1 RE command - Run register dump Extended
	10.37.2 RE buffer commands
	10.37.3 RC command - Run Command line buffer
	10.37.4 RC buffer commands

	10.38 RH command - Display Register dump History steps
	10.39 RM command - Display MMX Registers
	10.40 RN command - Display FPU Registers
	10.41 RX command - Toggle 386 Register Extensions display
	10.42 RV command - Show sundry variables
	10.43 RVV command - Show nonzero user-defined variables
	10.44 RVM command - Show debugger segments
	10.45 RVP command - Show process information
	10.46 RVD command - Show device information
	10.47 S command - Search memory
	10.48 SLEEP command
	10.49 T command - Trace
	10.49.1 TP command - Trace/Proceed past string ops

	10.50 TM command - Show or set Trace Mode
	10.51 TSR command - Enter TSR mode (Detach from process)
	10.52 U command - Disassemble
	10.53 UNINSTALL command - Uninstall optional features
	10.54 V command - Video screen swapping
	10.55 W command - Write Program
	10.56 W command - Write Sectors
	10.57 X commands - Expanded Memory (EMS) commands
	10.58 Y command - Run script file
	10.58.1 Y command pathnames
	10.58.1.1 Y command configuration pathes
	10.58.1.2 Y command default scripts path

	10.58.2 Y command labels
	10.58.3 Y command InDOS interaction

	10.59 Z commands - Symbolic debugging support
	10.59.1 Z /S=size - Allocate, resize, or free symbol tables
	10.59.2 Z STAT - Show symbol table statistics
	10.59.3 Z ADD - Add a symbol
	10.59.4 Z DEL - Delete a symbol
	10.59.5 Z COMMIT - Commit temporary symbols
	10.59.6 Z ABORT - Discard temporary symbols
	10.59.7 Z LIST - List symbols
	10.59.8 Z MATCH - Match symbols
	10.59.9 Z RELOC - Relocate symbols

	Section 11: Assembler Reference
	11.1 Assembler comparison to MSDebug
	11.2 Assembler comparison to NASM
	11.3 Assembler roundtrip
	11.4 Disassembly fields
	11.5 Assembly fields
	11.6 Assembly instruction reference
	11.6.1 Assembler instruction mnemonics
	11.6.2 Assembler operand types
	11.6.3 A quick overview of most 8086 instructions
	11.6.4 ALU 2-operand instructions
	11.6.5 ALU 1-operand instructions
	11.6.6 Multiplication and division
	11.6.7 Shifts and rotates
	11.6.8 Data movement
	11.6.9 Stack
	11.6.10 Branch
	11.6.11 Flags
	11.6.12 String
	11.6.13 Port I/O
	11.6.14 Special: Addresses and segments
	11.6.15 Special: Prefixes
	11.6.16 Special: BCD
	11.6.17 Special

	Section 12: Variable Reference
	12.1 Registers
	12.2 MMX registers - MMxy
	12.3 Options
	12.3.1 DCO - Debugger Common Options
	12.3.2 DCS - Debugger Common Startup options
	12.3.3 DIF - Debugger Internal Flags
	12.3.4 DAO - Debugger Assembly Options
	12.3.5 DAS - Debugger Assembly Startup options
	12.3.6 DPI - Debugger Parent Interrupt 22h
	12.3.7 DPR - Debugger PRocess
	12.3.8 DPP - Debugger Parent Process
	12.3.9 DPS - Debugger Process Selector
	12.3.10 DPSPSEL - Debugger PSP Segment/Selector

	12.4 Default step counts
	12.5 Default lengths
	12.6 Limits
	12.6.1 RELIMIT - RE buffer execution command limit
	12.6.2 RECOUNT - RE buffer execution command count
	12.6.3 RCLIMIT - RC buffer execution command limit
	12.6.4 RCCOUNT - RC buffer execution command count

	12.7 Return Codes
	12.7.1 RC - Return Code
	12.7.2 ERC - Error Return Code

	12.8 Addresses
	12.8.1 A address (AAS:AAO)
	12.8.2 D address (ADS:ADO)
	12.8.3 Address behind R disassembly (ABS:ABO)
	12.8.4 U address (AUS:AUO)
	12.8.5 E address (AES:AEO)
	12.8.6 DZ address (AZS:AZO)
	12.8.7 D$ address (ACS:ACO)
	12.8.8 D# address (APS:APO)
	12.8.9 DW# address (AWS:AWO)
	12.8.10 DX address (AXO)

	12.9 I/O configuration
	12.9.1 IOR - I/O Rows
	12.9.2 IOC - I/O Columns
	12.9.3 IOCLINE - I/O Columns for splitting lines in getinput
	12.9.4 IOS - I/O Circular Keypress Buffer Start
	12.9.5 IOE - I/O Circular Keypress Buffer End
	12.9.6 IOL - I/O Amount of Script Levels to Cancel
	12.9.7 IOF - I/O Flags

	12.10 I/O reading variables
	12.11 Serial configuration
	12.11.1 DSR - Debugger Serial Rows
	12.11.2 DSC - Debugger Serial Columns
	12.11.3 DST - Debugger Serial Timeout
	12.11.4 DSF - Debugger Serial FIFO size
	12.11.5 DSPVI - Debugger Serial Port Variable Interrupt number
	12.11.6 DSPVM - Debugger Serial Port Variable IRQ Mask
	12.11.7 DSPVP - Debugger Serial Port Variable base Port
	12.11.8 DSPVD - Debugger Serial Port Variable Divisor latch
	12.11.9 DSPVS - Debugger Serial Port Variable Settings
	12.11.10 DSPVF - Debugger Serial Port Variable FIFO select

	12.12 Timer configuration
	12.12.1 GREPIDLE - getc repeat idle count
	12.12.2 SREPIDLE - Sleep repeat idle count
	12.12.3 SMAXDELTA - Maximum encountered delta ticks
	12.12.4 SDELTALIMIT - Delta ticks limit

	12.13 _DEBUG1 variables
	12.13.1 TRx - Test Readmem variables
	12.13.2 TWx - Test Writemem variables
	12.13.3 TLx - Test getLinear variables
	12.13.4 TSx - Test getSegmented variables

	12.14 _DEBUG3 variables
	12.14.1 MT0 - Mask Test 0
	12.14.2 MT1 - Mask Test 1

	12.15 Y command variables
	12.15.1 YSF - Y Script Flags

	12.16 V variables - Variables with user-defined purpose
	12.17 PSP variables
	12.17.1 PSP - Process Segment Prefix
	12.17.2 PPR - Process PaRent
	12.17.3 PPI - Process Parent Interrupt 22h
	12.17.4 PSPSEL - PSP segment or selector

	12.18 SR variables - Search Results
	12.18.1 SRC - Search Result Count
	12.18.2 SRS - Search Result Segment
	12.18.3 SRO - Search Result Offset

	12.19 Access variables
	12.19.1 READADR
	12.19.2 READLEN
	12.19.3 WRITADR
	12.19.4 WRITLEN

	12.20 Machine type variables
	12.21 LFSR variables
	12.22 RIxxy - Real 86 Mode Interrupt vectors
	12.23 FL.xF - Flag status
	12.24 HHRESULT - H command result
	12.25 DARESULT - D.A command result
	12.26 XARESULT - XA command result
	12.27 INT8CTRL - Interrupt 8 Control pressed detection time
	12.28 Device mode variables
	12.29 QQCODE - Q command termination return code
	12.30 TERMCODE - Debuggee termination return code
	12.31 DDTEXTAND - Data dump text AND mask
	12.32 AMIS variables
	12.32.1 TRYAMISNUM
	12.32.2 AMISNUM
	12.32.3 TRYDEBUGNUM
	12.32.4 DEBUGFUNC

	12.33 COUNT - List length count
	12.34 RHCOUNT - Count of RH buffer entries
	12.35 ELDAMOUNT - Amount of installed ELDs
	12.36 CIP - Current CS's EIP or IP
	12.37 CSP - Current SS's ESP or SP
	12.38 Boot loading variables
	12.38.1 BOOTUNITFLxx

	Section 13: Interrupt Reference
	13.1 Mandatory interrupt hooks
	13.2 Serial interrupt
	13.3 Interrupt 2Fh - Multiplex (DPMI entrypoint)
	13.4 Interrupt 8 - Timer
	13.5 Interrupt 2Dh - Alternate Multiplex Interrupt
	13.5.1 AMIS private function 30h - Update IISP Header
	13.5.2 AMIS private function 31h - Install DPMI entrypoint hook
	13.5.3 AMIS private function 32h - Reserved for lDebugX
	13.5.4 AMIS private function 33h - Install fault areas
	13.5.5 AMIS private function 40h - Display message
	13.5.6 AMIS private function 41h - Query message status
	13.5.7 AMIS private function 42h - Get other link data
	13.5.8 AMIS private function 43h - Inject a debugger command

	Section 14: Service Reference
	14.1 Interrupt 10h
	14.2 Interrupt 16h
	14.3 Interrupt 2Fh
	14.4 Interrupt 12h
	14.5 Protected Mode Interrupt 31h
	14.6 Protected Mode Interrupt 2Fh
	14.7 Protected Mode Interrupt 21h
	14.8 Protected Mode Interrupt 25h
	14.9 Protected Mode Interrupt 26h
	14.10 Interrupt E6h
	14.11 Interrupt 15h
	14.12 Interrupt 13h
	14.13 Interrupt 19h
	14.14 Interrupt 2Dh
	14.15 Interrupt 25h
	14.16 Interrupt 26h
	14.17 Interrupt 21h
	14.18 Interrupt 67h

	Section 15: Extensions for lDebug reference
	15.1 LDMEM - Dump lDebug memory use.
	15.2 HISTORY - Command history utility.
	15.3 DI - Dump Interrupt vectors.
	15.4 DM - Dump MCBs.
	15.5 RN - Display FPU registers.
	15.6 RM - Display MMX registers.
	15.7 X - EMS commands.
	15.8 DX - Dump Extended memory.
	15.9 INSTNOUN - Operate on INSTALL flag nouns.
	15.10 RECLAIM - Reclaim unused ELD memory.
	15.11 ELDCOMP - Compare ELDs with differing linker options.
	15.12 AFORMAT - Format assembly output.
	15.13 AMISMSG - Display message received on AMIS interface.
	15.14 AMOUNT - Provide ELDAMOUNT variable.
	15.15 BASES - Convert between different numeric bases.
	15.16 CO - Copy debugger terminal output to a file.
	15.17 CONFIG - Access debugger config paths.
	15.18 DTADISP - Displays the current DOS Disk Transfer Address.
	15.19 IFEXT - Conditionally run a command if an ELD is installed.
	15.20 KDISPLAY - Displays the current K/N command buffers' content.
	15.21 LIST - List ELD/SLD files, description lines, sizes, help.
	15.22 PRINTF - Print formatted output.
	15.23 SET - Access environment variables.
	15.24 USEPARAT - Display disassembly separators.
	15.25 VARIABLE - Expand environment variables.
	15.26 WITHHDR - Run commands with temporary DCO flags set.
	15.27 AMISCMD - Run commands received on AMIS interface.
	15.28 AMISOTH - Provide other link info on AMIS interface.
	15.29 AMITSRS - List currently installed AMIS multiplexers.
	15.30 BOOTDIR - List directory entries.
	15.31 DBITMAP - Dump 8-bit-wide graphics from memory.
	15.32 DOSCD - Change DOS current directory or drive.
	15.33 DOSDIR - List directory entries.
	15.34 DOSDRIVE - Get or set a DOS drive.
	15.35 DOSPWD - Display DOS current directory.
	15.36 EXTNAME - Guess EXT and Y command filename extensions.
	15.37 INJECT - Inject commands into other debugger instance.
	15.38 INSTNOTH - INSTNOUN which operates on other link debugger.
	15.39 LDMEMOTH - LDMEM which operates on other link debugger.
	15.40 LINFO - Display status of L command.
	15.41 PATH - Path search for K/N commands.
	15.42 EXTLIB - Library of ELDs.
	15.43 EXTPAK - Compressed library of ELDs.
	15.44 QUIT - Quit the machine.
	15.45 DOSSEEK - Get or set the DOS 32-bit seek of a process handle.
	15.46 ALIAS - Define aliases.
	15.47 DPB - Display a DOS drive's DPB.
	15.48 RDumpIdx - Dump text bytes pointed to by DS:SI and ES:DI in R register dump.
	15.49 RDumpStr - Dump text pointed to by DS:DX in R register dump.
	15.50 CHECKSUM - Calculate checksum over a memory range.
	15.51 HINT - Display TracList hints to outer debugger
	15.52 HINTOTH - Display TracList hints of the other link debugger
	15.53 CHSTOOL - Work with int 13h partitions and geometry.
	15.54 S - Search command with additional support for WILD and CAPS keywords
	15.54.1 WILD - Search wildcard
	15.54.2 CAPS - Search with capitalisation folding
	15.54.3 UNCAPS - Reset search to do no capitalisation folding
	15.54.4 S ELD internals
	15.54.4.1 S ELD - Byte scan functions
	15.54.4.2 S ELD - Trailing string comparison function

	15.55 DOSSPACE - Display DOS drive total and free space
	15.56 DOSSTRAT - Display DOS memory allocation strategy and UMB link status
	15.57 DHM - Dump HMA Memory Control Block chain
	15.58 ERRFIX - Fix error message display
	15.59 RCEXEC - Add RC.EXECUTE command

	Section 16: Extension for lDebug format
	16.1 ELD executable format
	16.1.1 ELD executable extension header
	16.1.2 ELD library executable format

	16.2 ELD instance format
	16.3 ELD link info format
	16.4 ELD link call table
	16.5 ELD linker internals
	16.5.1 ELD data macros
	16.5.2 ELD code macros
	16.5.3 ELD linker sources
	16.5.4 ELD two-pass linker

	16.6 ELD interfaces
	16.6.1 ELD code and data buffers
	16.6.2 ELD command handler
	16.6.2.1 Procedure for installing ELD command handler
	16.6.2.2 Procedure for uninstalling ELD command handler

	16.6.3 ELD command injection
	16.6.4 ELD preprocess handler
	16.6.5 ELD AMIS handler
	16.6.6 ELD multi-purpose puts handler
	16.6.6.1 ELD multi-purpose puts handler: puts_ext_next entrypoint

	16.6.7 ELD puts copyoutput handler
	16.6.8 ELD puts getline handler
	16.6.9 ELD variables
	16.6.10 ELD near transfer interface

	Section 17: Command help
	17.1 lDebug help
	17.2 INSTSECT help

	Section 18: Online help pages
	18.1 ? - Main online help
	18.2 ?R - Registers
	18.3 ?F - Flags
	18.4 ?C - Conditionals
	18.5 ?E - Expressions
	18.6 ?V - Variables
	18.7 ?RE - R Extended
	18.8 ?RUN - Run keywords
	18.9 ?OPTIONS - Options pages
	18.10 ?O - Options
	18.11 ?BOOT - Boot loading
	18.12 ?BUILD - lDebug build (only revisions)
	18.13 ?B - lDebug build (with options)
	18.14 ?X - EMS commands
	18.15 ?SOURCE - lDebug source reference
	18.16 ?L - lDebug license

	Section 19: Comparison of lDebug to MS-DOS Debug
	Section 20: Test Reference
	20.1 test_beep
	20.2 test_build
	20.3 test_rh
	20.4 test_dt
	20.5 test_rr_status
	20.6 test_aa_basic
	20.7 test_rr_basic
	20.8 test_misc
	20.9 test_timeout
	20.10 test_int2D_unhook
	20.11 test_bb_gg
	20.12 test_bb_fill
	20.13 test_access_var
	20.14 test_dpmimini
	20.15 test_dpmioffs
	20.16 test_dpmialoc
	20.17 test_missing_executable
	20.18 test_error_executable
	20.19 test_load_boot
	20.20 test_yy
	20.21 test_double_ctrlc
	20.22 test_eee_interactive
	20.23 test_rc
	20.24 test_ext_extlib
	20.25 test_ext_ldmem
	20.26 test_ext_aformat
	20.27 test_ext_checksum
	20.28 test_ext_list
	20.29 test_ext_amitsrs
	20.30 test_ext_reclaim
	20.31 test_ext_amount
	20.32 test_ext_alias
	20.33 test_ext_dosseek
	20.34 test_ext_history
	20.35 test_ext_amismsg
	20.36 test_ext_amiscmd
	20.37 test_ext_amisoth

	Section 21: Additional usage conditions
	21.1 GLaBIOS font license (used for dbitmap.eld)
	21.2 BriefLZ depacker usage conditions
	21.3 LZ4 depacker usage conditions
	21.4 Snappy depacker usage conditions
	21.5 Exomizer depacker usage conditions
	21.6 X compressor depacker usage conditions
	21.7 Heatshrink depacker usage conditions
	21.8 Lzd usage conditions
	21.9 LZO depacker usage conditions
	21.10 LZSA2 depacker usage conditions
	21.11 aPLib depacker usage conditions
	21.12 bzpack depacker usage conditions

	Source Control Revision ID

