|IDebug manual

2020 by C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2022-12-29.

Contents

Section 1: Overview and highlights
Section 2: News
2.1 Release 5 (future)
2.2 Release 4 (2022-03-08)
2.3 Release 3 (2021-08-15)
2.4 Release 2 (2021-05-05)
2.5 Release 1 (2021-02-15) and earlier
Section 3: Building the debugger
3.1 Components for building
3.2 How to build
3.2.1 How to build the instsect application
3.2.2 How to prepare the test suite
3.3 Build options
Section 4: Getting started with the release
Section 5: Invoking the debugger
5.1 Invoking the debugger in boot loaded mode
5.2 Invoking the debugger as an application
5.3 Invoking the debugger as a device driver
5.4 Invoking the test suite
Section 6: Interface Reference
6.1 Interface Output
6.2 Interface Input
6.3 Enabling serial 1/0
6.4 Register dumping
6.5 Memory dumping

13
14
14
19
20
22
23
25
25
27
29
29
30
32
34
34
34
35
36
38
38
38
38
39
39

6.6 Disassembly

6.7 Loading the debuggee
6.8 Running the debuggee
6.9 Help

Section 7: Debugging the debugger itself
7.1 Initialising the debuggable debugger

Section 8: Parameter Reference

8.1 Number
8.2 Address
8.3 Range

8.4 Range withLINES keyword allowed

8.5 List

8.6 List or range
8.7 Keyword
8.8 Index

8.9 Segment
8.10 Breakpoint
8.11 Label

8.12 Port

8.13 Drive

8.14 Sector
8.15 Condition
8.16 Register
8.17 Command
8.18 1D

Section 9: Expression Reference

9.1 Literals
9.2 String literals
9.3 Variables

9.4 Indirection

40
40
41

41
42
42
44
44
44
44
45
45
45
45
45
46
46
46
46
46
46
46
46
47
47
48
48
48
48
48

9.5 Parentheses
9.6 LINEAR keyword
9.7 DESCTYPKeyword
9.8VALUE IN construct
9.8.1VALUE IN construct keywords
9.9 Conditional?? :: construct
9.10 Expression side effects
Section 10: Command Reference
10.1 Empty command - Autorepeat
10.2 ? command
10.3 : prefix - GOTO label
10.4 A command - Assemble
10.5 B commands - Permanent breakpoints
10.5.1 BP command - Set breakpoint
10.5.2 Bl command - Set breakpoint ID
10.5.3 BW command - Set breakpoint condition
10.5.4 BO command - Set breakpoint preferred offset
10.5.5 BN command - Set breakpoint number
10.5.6 BC command - Clear breakpoint
10.5.7 BD command - Disable breakpoint
10.5.8 BE command - Enable breakpoint
10.5.9 BT command - Toggle breakpoint
10.5.10 BS command - Swap breakpoint
10.5.11 BL command - List breakpoints
10.6 BU command - Break Upwards
10.7 BOOT commands - Boot loading support
10.7.1 BOOT PROTOCOL= command
10.7.1.1 Specify protocol
10.7.1.2 Altering protocol parameters

10.7.1.3 Specifying protocol partition

4

48
48
49
49
49
50
50
51
51
52
53
53
53
54
54
55
55
55
55
55
55
55
56
56
57
57
57
57
57
60

10.7.1.4 Specifying protocol filenames
10.7.1.5 Specifying protocol command line

10.7.2 BOOT LIST command
10.7.3 BOOT DIR command
10.7.4 BOOT READ and BOOT WRITE commands
10.7.5 BOOT QUIT command

10.8 C command - Compare memory

10.9 D command - Dump memory

10.10 DI command - Dump Interrupts

10.11 DM command - Dump MCBs

10.12 DZ/D$/D#/DW# commands - Dump strings

10.13 D.A/D.D/D.B/D.L/D.T commands - Descriptor modification
10.13.1 D.A command - Allocate descriptor
10.13.2 D.D command - Deallocate descriptor
10.13.3 D.B command - Set descriptor base
10.13.4 D.L command - Set descriptor limit
10.13.5 D.T command - Set descriptor type

10.14 E command - Enter memory

10.15 F command - Fill memory

10.16 G command - Go

10.17 GOTO command - Control flow branch

10.18 H command - Hexadecimal add/subtract values

10.19 I command - Input from port

10.20 IF command - Control flow conditional

10.21 INSTALL command - Install optional features

10.22 L command - Load Program

10.23 L command - Load Sectors

10.24 M command - Move memory

10.25 M command - Set Machine mode

10.26 N command - Set program Name

5

61
61
62
62
62
62
63
63
63
64
65
65
66
66
66
66
66
66
67
68
69
69
70
70
71
72
72
72
72
72

10.27 O command - Output to port

10.28 P command - Proceed

10.29 Q command - Quit

10.30 QA command - Quit attached process

10.31 QB command - Quit and break

10.32 R command - Display and set Register values
10.32.1 RE command - Run register dump Extended
10.32.2 RE buffer commands
10.32.3 RC command - Run Command line buffer
10.32.4 RC buffer commands

10.33 RM command - Display MMX Registers

10.34 RN command - Display FPU Registers

10.35 RX command - Toggle 386 Register Extensions display

10.36 RV command - Show sundry variables

10.37 RVV command - Show nonzero user-defined variables

10.38 RVM command - Show debugger segments
10.39 RVP command - Show process information
10.40 RVD command - Show device information
10.41 S command - Search memory
10.42 SLEEP command
10.43 T command - Trace
10.43.1 TP command - Trace/Proceed past string ops
10.44 TM command - Show or set Trace Mode
10.45 TSR command - Enter TSR mode
10.46 U command - Disassemble
10.47 UNINSTALL command - Uninstall optional features
10.48 V command - Video screen swapping
10.49 W command - Write Program
10.50 W command - Write Sectors

10.51 X commands - Expanded Memory (EMS) commands

6

73
73
73
73
74
74
74
75
75
75
75
75
75
75
76
76
76
77
77
78
78
78
78
78
78
79
79
79
79
79

10.52 Y command - Run script file

10.53 Z commands - Symbolic debugging support
10.53.1 Z /S=size - Allocate, resize, or free symbol tables
10.53.2 Z STAT - Show symbol table statistics
10.53.3 Z ADD - Add a symbol
10.53.4 Z DEL - Delete a symbol
10.53.5 Z COMMIT - Commit temporary symbols
10.53.6 Z ABORT - Discard temporary symbols
10.53.7 Z LIST - List symbols
10.53.8 Z MATCH - Match symbols
10.53.9 Z RELOC - Relocate symbols

Section 11: Variable Reference

11.1 Registers

11.2 Options
11.2.1 DCO - Debugger Common Options
11.2.2 DCS - Debugger Common Startup options
11.2.3 DIF - Debugger Internal Flags
11.2.4 DAO - Debugger Assembly Options
11.2.5 DAS - Debugger Assembly Startup options
11.2.6 DPI - Debugger Parent Interrupt 22h
11.2.7 DPR - Debugger PRocess
11.2.8 DPP - Debugger Parent Process
11.2.9 DPS - Debugger Process Selector
11.2.10 DPSPSEL - Debugger PSP Segment/Selector

11.3 Default step counts

11.4 Default lengths

11.5 Limits
11.5.1 RELIMIT - RE buffer execution command limit
11.5.2 RECOUNT - RE buffer execution command count
11.5.3 RCLIMIT - RC buffer execution command limit

80
80
80

81
81
81
81
81
82
82
82
83
83
83
83
83
83
83
83
83
84
84
84
84
84
84
85
85
85
85

11.5.4 RCCOUNT - RC buffer execution command count

11.6 Return Codes

11.6.1 RC - Return Code
11.6.2 ERC - Error Return Code

11.7 Addresses

11.7.1 A address (AAS:AAO)

11.7.2 D address (ADS:ADO)

11.7.3 Address behind R disassembly (ABS:ABO)
11.7.4 U address (AUS:AUQO)

11.7.5 E address (AES:AEOQO)

11.7.6 DZ address (AZS:AZO)

11.7.7 D$ address (ACS:ACO)

11.7.8 D# address (APS:APO)

11.7.9 DW# address (AWS:AWO)

11.7.10 DX address (AXO)

11.8 I/0O configuration

11.8.1 IOR - I/O Rows

11.8.2 10C - I/0O Columns

11.8.3 10S - I/O Circular Keypress Buffer Start
11.8.4 I0OE - I/O Circular Keypress Buffer End
11.8.5 I0OL - I/O Amount of Script Levels to Cancel
11.8.6 IOF - 1/O Flags

11.9 Serial configuration

11.9.1 DSR - Debugger Serial Rows

11.9.2 DSC - Debugger Serial Columns

11.9.3 DST - Debugger Serial Timeout

11.9.4 DSF - Debugger Serial FIFO size

11.9.5 DSPVI - Debugger Serial Port Variable Interrupt number
11.9.6 DSPVM - Debugger Serial Port Variable IRQ Mask
11.9.7 DSPVP - Debugger Serial Port Variable base Port

8

85
85
85
85
85

85
85

86
86
86
86
86

86
86
86
86

86
86

86
87
87
87
87

87

87

88

88
88
88
88

11.9.8 DSPVD - Debugger Serial Port Variable Divisor latch
11.9.9 DSPVS - Debugger Serial Port Variable Settings
11.9.10 DSPVF - Debugger Serial Port Variable FIFO select

11.10 DEBUGLI variables
11.10.1 TRx - Test Readmem variables
11.10.2 TWx - Test Writemem variables
11.10.3 TLx - Test getLinear variables
11.10.4 TSx - Test getSegmented variables
11.11 DEBUGS variables
11.11.1 MTO - Mask Test 0
11.11.2 MT1 - Mask Test 1
11.12 Y command variables
11.12.1 YSF - Y Script Flags
11.13 V variables - Variables with user-defined purpose
11.14 PSP variables
11.14.1 PSP - Process Segment Prefix
11.14.2 PPR - Process PaRent
11.14.3 PPI - Process Parent Interrupt 22h
11.14.4 PSPSEL - PSP segment or selector
11.15 SR variables - Search Results
11.15.1 SRC - Search Result Count
11.15.2 SRS - Search Result Segment
11.15.3 SRO - Search Result Offset
11.16 Access variables
11.16.1 READADR
11.16.2 READLEN
11.16.3 WRITADR
11.16.4 WRITLEN
11.17 Machine type variables
11.18 LFSR variables

88
88
88

88

89

89
89
90
90
90
90
90
90
90
90
91
91
91
91
91

91
91

91

91

91
91
92
92
92
92

11.19 RIxxy - Real 86 Mode Interrupt vectors

11.20 FL.xF - Flag status

11.21 HHRESULT - H command result

11.22 INT8CTRL - Interrupt 8 Control pressed detection time
11.23 Device mode variables

11.24 QQCODE - Q command termination return code
11.25 TERMCODE - Debuggee termination return code

Section 12: Interrupt Reference

12.1 Mandatory interrupt hooks
12.2 Serial interrupt
12.3 Interrupt 2Fh - Multiplex (DPMI entrypoint)
12.4 Interrupt 8 - Timer
12.5 Interrupt 2Dh - Alternate Multiplex Interrupt
12.5.1 AMIS private function 30h - Update IISP Header

12.5.2 AMIS private function 31h - Install DPMI entrypoint hook

12.5.3 AMIS private function 32h - Reserved for IDebugX
12.5.4 AMIS private function 33h - Install fault areas

Section 13: Service Reference

13.1 Interrupt 10h

13.2 Interrupt 16h

13.3 Interrupt 2Fh

13.4 Interrupt 12h

13.5 Protected Mode Interrupt 31h
13.6 Protected Mode Interrupt 2Fh
13.7 Protected Mode Interrupt 21h
13.8 Protected Mode Interrupt 25h
13.9 Protected Mode Interrupt 26h
13.10 Interrupt E6h

13.11 Interrupt 15h

13.12 Interrupt 13h

10

93
93
94

94
94
94
95
96
96
96
97
97
97
98
99
99
99
101

101

101

101

102

102
104
104
104
104

104

104

104

13.13 Interrupt 19h

13.14 Interrupt 2Dh

13.15 Interrupt 25h

13.16 Interrupt 26h

13.17 Interrupt 21h

13.18 Interrupt 67h
Section 14: Command help

14.1 IDebug help

14.2 INSTSECT help
Section 15: Online help pages

15.1 ? - Main online help

15.2 ?R - Registers

15.3 ?F - Flags

15.4 ?C - Conditionals

15.5 ?E - Expressions

15.6 ?V - Variables

15.7 ?RE - R Extended

15.8 ?RUN - Run keywords

15.9 70PTIONS - Options pages

15.10 ?0 - Options

15.11 ?BOQOT - Boot loading

15.12 ?BUILD - IDebug build (only revisions)

15.13 ?B - IDebug build (with options)
15.14 ?X - EMS commands

15.15 ?SOURCE - IDebug source reference

15.16 ?L - IDebug license

Section 16: Additional usage conditions
16.1 BriefLZ depacker usage conditions
16.2 LZ4 depacker usage conditions
16.3 Snappy depacker usage conditions

11

105
105
105
105
105
108
109
109
109
111
111
112
113
113
113
115
115
116
116
116
121
123
123
123
123
124
125
125
125
125

16.4 Exomizer depacker usage conditions
16.5 X compressor depacker usage conditions
16.6 Heatshrink depacker usage conditions
16.7 Lzd usage conditions

16.8 LZO depacker usage conditions

16.9 LZSAZ2 depacker usage conditions

16.10 aPLib depacker usage conditions

16.11 bzpack depacker usage conditions

Source Control Revision ID

12

126
126
127
127
127
127
128
128
130

Section 1: Overview and highlights

IDebug is a 86-DOS debugger based on the MS-DOS Debug clone FreeDOS Debug. It features
DPMI client support for 32-bit and 16-bit segments, a 686-level assembler and disassembler,
an expression evaluator, an InDOS and a bootloaded mode, script file reading, serial port
I/0, permanent breakpoints, conditional tracing, buffered tracing, and auto-repetition of some

commands. There is also a symbolic debugging option being developed.

13

Section 2: News

2.1 Release 5 (future)

IDebugX: Fix, allow to use TSR command in PM (expected a segment where a selector
was read)

IDebugX: Fix PSP variables and TSR command expecting higher limit in PM
(getsegmented now sets limit 0)

IDebugX: Fix getexpression not preserving the scratch selector

Add FL.xF variables to read flag status in expressions, eg FL.CF which reads as 1 if CY
and O if NC

When creating an empty process (eg after QA command) also write the current command
line tail to it (instead of the debugger's internal N buffers)

Display amount of ancestors for the symsnip revision ID

A pair of 32-bit E command fixes

Write AES:AEO (e_addr) in E command and allow E command without an address
IDebugX: Add DESCTYPE keyword in expressions

IDebugX: Add descriptor modification commands and DARESULT variable, refer to
section 10.13

Add XARESULT variable for XA command

Allow to share the serial IRQ so eg two IDebug instances can be connected to two serial
ports that use the same IRQ, like COM2 and COM4 (both use IRQ #3 by default)

Do not simulate repeated string scan/compare instructions when disassembling them using
the U command (only do so for R command disassembly)

Disassembler handles 032/016 OSIZE prefixes as belonging to push and pop with segregs,
instead of displaying the prefix asriused .

If simulation of repeated string scan/compare instructions is disabled in DAO then the
access variables will now be set up assuming a count of 1, rather than the maximum possible
count.

Add convenience entrypoints for debuggable mode at CODE:1, CODEZ2:0, and CODE2:1.
The offset 0 entrypoints will return to the main command loop, calkeadd3’. The offset
1 entrypoints will additionally display a linebreak.

14

Allow switching ICDebugX to debuggable mode upon putrunint and allow running a
breakpoint early in putrunint.

Add AMIS private function 33h, provided by IDebugX by default and can be used by
IDDebugX/ICDebugX by default

Add INSTALL and UNINSTALL commands
Allow to specify length of D command with LINES keyword

Add DEFAULTDLEN, DEFAULTDLINES, DEFAULTULEN, and DEFAULTULINES
variables to modify default sizes of D and U commands

Display long numeric constants with underscore separators for readability in online help
pages and documentation

Allow to disable disassembler memory access for referenced memory and repeated string
instruction simulation, using four new DAO flags

Change HP 95LX 40-column friendly mode support in the disassembler to use two DAO
flags rather than two DCOG6 flags (one of which was shared)

Allow to specify variable RIXP/S/O/L with x as a single-digit hexadecimal number
Bugfix: Allow operators between ?? and :: in aternary operator expression for H command

Allow to specify SILENT keyword followed by a number before the S command's range
or list, display only up to a certain amount of results

Add CLR operator, bitwise AND with the bitwise NOT of the right hand operand.
Precedence above bitwise AND.

Bugfix: Absolute value operat& should always give its result an unsigned type

Allow switching ICDebugX to debuggable mode upon debugger exception and allow
running a breakpoint early or late in debugger exception.

Add debugger exception areas to display the cause of a memory access which may fault
in the debugger. Also adds a linebreak for eg referenced memory reads to work in tandem
with the partial disassembler output. (Idea from FreeDOS Debug/X, though there it only
does a linebreak and implements it differently.)

Bugfix: Disassemble mov with segreg and memory operand always with m16, ignoring the
operand size selected. In assembler never emit an osize prefix and reject andxplidit
size keyword.

In disassembler display instruction and referenced memory address before accessing
memory, so partial output is displayed in case a fault occurs in the debugger (FreeDOS
Debug/X pick)

Document side effects of expression evaluator

Budgfix, allow all valid address parameter formats for the source address of an M move
memory command (suggested by FreeDOS Debug/X)

Add AMIS private function 31h to instruct IDebugX to try to install its DPMI hook, make

15

use of this in IDDebugX and ICDebugX
Add descriptions of BOOT commands to manual

Fix HIDDEN= keyword for BOOT READ/WRITE with partition specified, add
HIDDENADD= keyword to modify rather than replace hidden sectors

Fix a bug in BOOT PROTOCOL= command that could disallow use of ENTRY and BPB
parameters if running a non-DPMI build on a 386+ machine

Avoid faults in the debugger if a code selector with a low limit gets used for writing, eg by
A or E commands

Fix bug setting wrong debuggee CS limit if DUALCODE build

Add variables DSTACKSEG/SEL, DENTRYSEG/SEL, DCODE1/2SEG/SEL,
DAUXBUFSEG/SEL, DHISBUFSEG/SEL, DSCRATCHSEL, DSYM1/2SEL (selector
variables only for IDebugX, symsels only for symbolic IDebugX)

RVM command shows second code segment if _DUALCODE build

In C, E, and A commands in PM display original selector, not the scratch selector as
replacement. Variable AAS is also affected by this.

Fix a bug with different selectors for IDebugX C and M commands (picked from FreeDOS
Debug/X version 2.00)

Add taken keywords to address parsing, refer to section 8.2. (This effectively adds the
GTandGNTcommands, as well aBBTEST=TAKENand TTEST=NOTTAKENb change

(e)ip)

Bugfix: Allow entering double-slash to disable second file search for the BOOT
PROTOCOL= command even if no command line follows

Application /C= switch and kernel command line will now skip leading blanks following
a semicolon that is converted to a linebreak

Modify serial interrupt handler to pass on interrupt call if the PIC does not indicate an
interrupt in the In-Service Register (ISR)

Add /M switch and interrupt 7, 0Ch, ODh hooks (for R86M exceptions), though build
options for all of them are disabled by default

Add force BPB CHS geometry (4) and force LBA access (2) flags tB®TUNITFLx
flag variables

Add switches /F and /E

Allow zero as parenthetical partition specification, allow to access partition
u(bootldpunit).(bootldppart) if LDP is equal to FDA

Bugfix: Reading with BOOT command that crossed 64 KiB DMA boundary would copy
too much or too little from the sector segment to target

Start of HP 95LX support (NEC disassembly repeat rules, narrower R/U/D command
output, do not intercept interrupt 6)

16

Bugfix: Command f . no longer displays garbage

Use test_high_limit to check segment limits, to determine whether to use 32-bit offsets in
several spots

Disable calling XMS by Protected Mode far call by default
Add dual code segment support to allow code size beyond 64 KiB

Introduce dash prefix to commands to disable symbolic debugging features (no-op if not
symbolic build)

Introduce U address LENGTH length LINES keyword to disassemble a number of lines
rather than bytes

Add BS command for swapping permanent breakpoint indices
Document doubled delimiter quote mark for lists and string literals
Add string literal escaping of delimiter quote mark by doubling the delimiter quote mark

Add/2 switch to use alternative video adapter for debugger output if available (pick from
FreeDOS Debug)

Add ?OPTIONShelp page and specific pages for DCO1, DCO2, DCO3, DCO4, DCO6,
DIF, and DAO

Set newINICOMP_WINNERbuild variable so as to use lzsa2 compression for current
releases

Add _DEBUG_CONBuild option to allow toggling debug mode on and off at run time

Add INT8CTRL variable which contains number of ticks to wait for Control pressed
entrypoint; set to zero to disable

Fix: Control-C also aborts RC command buffer execution
Fix: Default operand foAAMandAADinstructions is omitted in disassembler

Enhancement: If at the end of a stdin-redirected file the debugger cannot quit it will now
enable INDOS mode and allow the user to control the debugger afterwards

Fix: Do not crash or loop infinitely upon encountering the end of a stdin-redirected file
Extract more source files from debug.asm

Allow appendingd0 to a 16-bit register name to get a 32-bit value with the register value
in the high word

Do not cause error from emptZ=" switch
Use ampersand prompt to display commands run from RC buffer

When loading a .BIN file set the process's command line buffer the same way as if loading
a .COM file

Add heading hash links to every heading in the Idebug.htm manual (requires patched
Halibut)

17

Add LFSR and LFSRTAP variables
Run unix2dos on Idebug.txt manual

Add QD (quit from device initialisation) and QC (quit from device in container MCB)
commands

Add RVD command to display device header address and allocation size, as well as
DEVICEHEADER and DEVICESIZE variables to read same

Bugfix, on pass or non-pass permanent breakpoint hit while running with T/TP/P command
do not check WHILE condition

Add PARASkeyword to range length parsing, to multiply a count by 16 (size of a
paragraph)

Bugfix, should allow to run if int 2Fh is invalid

Add device-driver mode to allow loading the debugger in CONFIG.SYS
Fix, do not crash if no UMCB but int 21.5803 works

Add V commands and /V command-line switch (video screen swapping)

Add RIxxP variables to read IVT entries in a way suitable to be used@ENTERtype
expressions

Work around FreeDOS kernel bug prior to 2022 May so as to fail on loading an empty
executable

Fix, also use SDA manipulation to change current PSP when IDebugX is in Protected Mode
Add TERMCODE variable to read int 21.4D return after debuggee process terminated
Add QB command (run breakpoint late in debugger quit)

Add RVP command to display debugger mode and current debuggee and debugger process
addresses

Add (D)PSP|PARENT|PRA|PSPSEL variables

Do not try to proceed past a call near immediate if the called functions consistetbf a
instruction. (This supports a method for relocation, used for example by the debugger
itself.)

Add command-line switch /B to run a breakpoint early

Add RC commands to view, change, and run RC buffer commands, re-using the command
line buffer

Add MACHX8&ndMACHX8%ariables to read machine type

Allow M machine type command to parse an expression for the machine level number to
set

Add QA command (try to terminate attached process)

Fix int 19h and debuggee termination handling. Int 19h in a DOS application mode now

18

sets up registers to terminate the current process when running the debuggee again.
Add an IDebugX option DCO3 20_0000 to break on entering PM

Add an IDebugX option DCO3 10_0000 to use a 32-bit stack segment for the debugger
itself (can help compatibility)

Fix so that semicolon is allowed as End Of Line in getrange

Fix R size [mem] := val causing a fault in the debugger if value ends in FFFFh
ImplementPOINTERtypes for handling a 32-bit expression as a 16:16 far pointer
Implement basic handling of expression types (signed/unsigned)

Revision IDs in?BUILD command list the amount of ancestors to help to compare
revisions

Fix a segment addressing bug when switching modes (eg have a breakpoint in a DPMI
allocation while the client is running in 86 Mode)

Fix some cases of detecting 32-bit offsets incorrectly

2.2 Release 4 (2022-03-08)

Recognise LF as linebreak in serial input

E interactive mode fixes:
» Support LF to exit interactive mode (that is, accept Linux style linebreaks)
» Support DEL sent by serial terminal
* InIDebugX correctly handle 32-bit offsets
» Also write new value when minus is entered
* Honour blank for continue to next byte, CR or dot for exit interactive mode
* Always correctly read value even if blank is entered afterwards

* Improve E interactive mode compatibility across different input sources (like stdin
file, script file, serial terminal)

» Display linebreak upon new address displayed

Fix: Register variableCH would be misparsed asCHARtype instead of the expected
variable

Allow DI command to receive an IN value list similar to the y in a VALUE x IN y construct

Fix: Allow to set a breakpoint on an interrupt 21h handler and do not crash or corrupt
state if the debuggee then terminates. (That is, do not call service 4Dh before restoring
breakpoints.)

Fix: Too long N command could crash the debugger

Fix: DDebug TSR quit would not work correctly due to overflowing a liet®

19

 AddR, M, and L key letters to DI command (always 86 Mode, show MCB names, follow
AMIS interrupt lists)

* Fix:R WORD [memorylJpromptwould not consider the size keyword as part of the input
line prompt

* Add AMIS private function 30h - Update ISP Header

* In DI command in 86 Mode follow IISP headers

* Add QQCODHariable

e AddBOOTI[L|Y|S][UNIT|PART] variablesBOOTUNITFL(x) variables
* Add bzpack compression method

* Drop DPS variable when building without DPMI support

» Fix PSP variablesin Protected Mode: PSP is always a 86 Mode segment, PSPS is a segment
or selector, and PPR and PPI work

 Add HHRESUL Variable
2.3 Release 3 (2021-08-15)

» Add workaround with extra int 23h and int 22h handlers and raw mode-switching to use
interrupt 21h service OAh in PM. DCO2 flag 800h clear by default.

e Add TRYAMISNUM variable to try a specific AMIS multiplex number first

* Add DCO4 flag 2 to allow disabling IDebugX's int 2Fh hook

* Build option_ MEMREF_AMOUNMabled by default

* mktables switchedirection andstackhinting enabled by default

* Fix DOS application script file reading to honour InDOS status

* Fix H BASE= command with GROUP= sometimes displaying trailing garbage
» Fix DDebugX hooking random PM interrupts

* Fix trailing blanks in DI command

* Added a number of automated acceptance tests

» Add variableAMISNUMo read the multiplex number

* Fixanold bug in the assembler that happened to make instructiongldie ‘ax, 0 ’fail
to assemble now

* Made interrupt 8 hook optional, default-off
* Added optional, default-off interrupt 2Dh hook
* Properly unhook interrupts utilising ISP header chains, if the debugger's interrupt handlers

are reachable. Added DCO4 flags (upper 16 bits) to force unhooking if a handler is

20

unreachable. If a handler is both unreachable and not forcibly unhooked then it stays
hooked. The Q command fails in that case.

Fix to allow ‘$’ prefix to segments in DebugX while in Real/Virtual 86 Mode

Debugger's 86 Mode entrypoints now use the IBM Interrupt Sharing Protocol header.
(However, it is still assumed that the debuggemsthe interrupt entrypoints.)

Add WIDTH=keyword handling tdci BASE=

Introduce variables IOL and IOF to control how many levels of execution are cancelled by
Control-C

Scripts with CR LF linebreaks at the end or after calling another script no longer cause
superfluous empty lines to be processed

Control-C aborts script file reading that is in progress

Bugfix, when calling three nested levels of Y script files while bootloaded then the
outermost script's already buffered content would not rewind properly

Fix so that Control-C from ROM-BIOS keypress bufferis consumed properly while reading
script file, instead of looping forever

Check for Control-C in ROM-BIOS's circular keypress buffer, add variables 10S and IOE
Extend Control-C handling so RE buffer execution is aborted by it

Add a simpleBOOT DIRcommand (SFN name only, attributes, size (using FAT+),
datetime)

Add string literals#"..." to expression evaluator
AddH BASE=command

Addmerge anddebug switchesto mktables. Both are default off for now. Merging means
redundant operand list tails are merged.

Bugfix, accessing the variable SRC caused an infinite loop

LZMA-Izip depacker fixed to not uses xlatb , as the segment override prefix may be
ignored on CPUs below 386

Added conditionaP? :: construct operator

Merged branchuumemref and made memrefs available in default branch. The build
option_ MEMREF_AMOUMNIust be enabled to use them.

Memory access direction and stack hinting in the assembler and disassembler tables.
Switches namedirection andstackhinting to mktables program. (Default off
for now.)

LINEAR term allowed in expressions
VALUE IN construct allowed in expressions

Commas are only allowed between expressions, no longer within expressions

21

If DCO2 flag 8000h is set during RE buffer execution and SILENT 1 was used do actually
only display last RE output

2.4 Release 2 (2021-05-05)

Documented SLEEP command
Line editing history for raw terminal/serial input (in a fixed segment of size 8 KiB currently)

Fix missing register dump after T/TP/P which ends up matching a non-pass non-hit
breakpoint

Fix: Entering a literal as 3#102002022201221111211 or #4294967296 would overflow
silently to zero instead of causing an error

Reset high words of EIP and ESP when trying to terminate client process
Add change highlighting to R register dump

Assembler internals: Allow ASM_ESCAPE usage when needed

If BL command is given an unused index do not display incorrect WHEN
Reset segment registers when trying to terminate client process

Handle unusual SIB bytes correctly in P command's disassembly

Bugfix, Y script file called by another Y script file would turn quiet

Bugfix, if permanent breakpoint WHEN condition was in use then the wrong index and ID
would be displayed in the pass/hit message

Acknowledge IRQ to secondary PIC too if applicable (if using a high IRQ for the serial
I/O interrupt)

Bugfix, in BOOT commands do not prepend a word to the auxbuff anymore
Only create manual in HTML, text, and PDF formats

Add files doc/fdbuild.txt and doc/LDEBUG.LSM for FreeDOS packages
BOOT: work around gemu bug with OOPNZ

BOOT: retry CHS reads up to 16 times

Add instsect and IDebug command help to manual

Expression evaluator allow®R=as synonym for[= ' (especially useful if shell does not
allow specifying pipe symbol for /C)

Assembler: Allow specifying LOOPxx destination, (E)CX " as in NASM
instruction reference to specify address size

For assembler allow specifyingNT BYTE 3’ to get CDh encoding and display it this
way in disassembler

Only adjust offset saved in PSP's SPSAV variable if it points to our stack

22

In assembler do not allow sizeless memory operand when immediate matches IMMSS8 (eg
‘add [100], 12)

2.5 Release 1 (2021-02-15) and earlier

‘G REMEMBEBommand to work with the saved temporary breakpoint list
WHEN conditions for permanent breakpoints

RIxxO/S/L variables (read-only view of IVT entry)

3BYTE type for R var ' and indirection in expression evaluator

In disassembler handle unusual SIB byte contents correctly

IDs for listing permanent breakpoints

In disassembler correctly dump far memory operands, double memory operands
(BOUND), and do a32 addressing

Add ‘S range REVERSE command

Fix corner case of S command: The commaridd00 | 10 O '\‘s 100 | 10 O '
should result in 16 matches

SROx and SRC search result variables

SLEEP command

H command displays decimal numeric value (when given a single expression)
In disassembler display WORD keyword when 016 in 32-bit CS

Budfix, in XR do not skip first digit of allocation size

G and T/TP/P breakpoints work reliably in DebugX when the client enters, leaves, or
switches from/to Protected Mode

F and S command allow acceptifgANGEspecifications for source data
Add TTC/TPC/PPC default step counts for T/TP/P commands

DW/DD commands to dump memory in words or doublewords

Manual added (this document)

RE buffer execution to run almost arbitrary commands when T/TP/P/G intend to dump
register contents

Conditional control flow with IF and GOTO in a script file

/C command line option to pass commands to the debugger on startup
In assembler allow specifying SHORT/NEAR/FAR for jumps and calls
Script file reading

Pass point functionality (inspired by DR-DOS's SID) using counters

23

G LIST command to list the saved temporary breakpoint list
Auto-repetition for G command, G AGAIN command

DebugX's DPMI entrypoint hooking automatically checked instead of always avoiding it
on MSW and dosemu

Serial port /0O, with defaults (for COM2) that can be reconfigured using debugger variables
Permanent breakpoints

Buffered tracing using?/TP/T ... SILENT ’whichwritesto aninternal buffer during
the run then replays the last entries from it upon finishing the run

TP command which is like T except it handles repeated string operations like P
DM command lists MCB sizes in decimal Bytes/KiB

Conditional tracing usingP/TP/T ... WHILE ' conditions

L and W commands allow drive letters instead of numbers

Bootloaded mode and its BOOT commands

NASM style address disassembly, blanks after commas, keywords uncapitalised
TSR mode and command to enter it

R command allows treating flags (CF, ZF, etc), debugger variables, registers, and memory
variables (byte, word, 3byte, dword) as variables

Conditional "jumping” and "not jumping" notices in register dump's single-line
disassembly

Options DCO1, DCO2, DCO3, DAO to modify some behaviour
Extended online help pages

_DEBUG option which swaps the exception handlers and thus allows debugging most of
the debugger itself (_ DEBUG builds are not included in the package and have to be created
by building them specifically)

Arbitrary unsigned 32-bit expression evaluator
Paging for long command output

Usage conditions changed to Fair License (having asked Paul Vojta and received his
confirmation), prior conditions also allowed as alternatives

24

3.1

Section 3: Building the debugger

Building IDebug is not supported on conventional DOS-like systems. (DJGPP environments
may suffice but are not tested.) Assembling the main debugger executable may require up to 1
GiB of memory.

Components for building
The following components are required to build with the provided scripts:
* bash - to run mak* scripts
» perl - to patch binaries (overwrite unused revision IDs)
* grep - to detect whether boot loading is in use, and to export variables
* sed - to filter dosemu2 output
* hg (Mercurial) - to retrieve revision IDs
¢ wc - to count amount of ancestors
e python - to run hg and to run the test suite
» C compiler - to compile supporting programs
e dosemu? - to run build decompression tests (optional)
* gemu - to run build decompression tests (optional)
* nasm - to assemble. NASM versions to choose:
* NASM versions up to 2.07 fail -%deftok ’is not supported
* NASM versions prior to 2.09.02 fail -%deftok ' is implemented wrongly
* NASM version 2.09.02 works (last tested 2019-11)

» NASM versions 2.09.03 to 2.09.10 all fail 96assign %$foo%([bar] quux ’
doesn't function right

* NASM version 2.10.09 works (last tested 2019-11)

* NASM version 2.14.03 works (last tested 2020-12)

* NASM version 2.15.03 works (last tested 2020-12)

* NASM version 2.16 (current git head) fails, due to a bug with %strcat and a bug with
%assign ?%1 and a bug with %00

25

https://bugzilla.nasm.us/show_bug.cgi?id=3392732
https://bugzilla.nasm.us/show_bug.cgi?id=3392733
https://bugzilla.nasm.us/show_bug.cgi?id=3392733
https://bugzilla.nasm.us/show_bug.cgi?id=3392803

(As of 2022-08-23) Current git head with a patch for the %strcat bug and with a patch
for the %00 bug works (last tested 2022-08)

NASM version 2.16rc10 works (last tested 2022-11)

» halibut - to build this manual

e supporting programs:

mktables (included in debugger source)
tellsize (included in separate repo called tellsize)

mktmpinc.pl (included in separate repo called mktmpinc, to create temporary include
files, optional)

crcl6-t/iniload/checksum (included in separate repo called crcl6-t, to add
checksumming, optional)

a 86-DOS kernel and shell (to run build decompression tests or the test suite, optional)

» additional sources (must be referenced in cfg.sh or ovr.sh):

Imacros (macro collection)

scanptab (partition table scanning for bootable debugger)

Idosboot (iniload frame for bootable debugger, boot sector loaders)
instsect (application to install boot sector loaders)

bootimg (to run decompression test with gemu and create boot image for gemu to use
for the test suite)

inicomp (if to use compression support), also needs one of:
* Drieflz (blzpack)
* 1z4 (1z4c)
* snappy (snzip)
* exomizer -- recommended as this usually results in the smallest files
s X-compressor
* heatshrink

* |zip -- usually even smaller than Exomizer but takes longer to decompress

* lzop
* lzsa
e apultra
* bzpack

crcl6-t/iniload (if to add checksumming)

26

https://github.com/netwide-assembler/nasm/pull/25#issuecomment-1186217590
https://bugzilla.nasm.us/show_bug.cgi?id=3392803

* symsnip (only if symbolic option is enabled)

3.2 How to build

1. Clone the mercurial repo from https://hg.pushbx.org/ecm/ldebug or in an existing repo use
‘hg pull ’to update the repo

2. Update the repo witthg up’or‘hg up default ’orany other available commityou
want to build

3. Clone the other needed repos from https://hg.pushbx.org/ecm/ or in existing repos use
‘hg fetch ’orthe sequence ohig pull ’then‘hg up’to update the repos. (Usually
the additional source repos do not have multiple branches.)

4. Copy the Idebug/source/cfg.sh file to ovr.sh in the same directory
5. Edit ovr.sh to point to the repos

6. EditINICOMP_METHOIN ovr.sh to select none, one, or several compression methods.
Surround multiple values with quotes and delimit with blanks. If the value "none" is used no
compression will occur. If several values are given the smallest of the resulting files will be
used as thielebug.com result. This favours LZMA-Izip (Izd) and Exomizer 3 (exodecr)
compression as they result in the best ratios. The uncomprieldmayu.com file will
always be generated, you can rename or copy or symlink it to usédebag.com if
you want.

7. Ifyou have dosemu?2 or gemu, you may enablae build_decomp_test option.
This insures that the compressed executables will actually succeed in decompression
when entered in EXE mode, and will lower the required minimum allocation given in
the EXE header to the minimally required value so that decompression will still succeed.
This defaults to using dosemu2, which must have a DOS installed that allows filesystem
redirection. DEFAULT_MACHINEcan be used to select gemu instead. The options
BOOT_KERNEIBOOT_COMMANIMNABOOT_PROTOCOhust be set up then to allow
building a bootable diskette. (This is needed because gemu does not offer filesystem
redirection for DOS.)

8. Theuse_build_revision_id option is by default on. It requires that the sources are
in hg (Mercurial) repos and that the hg command is available tdrginitl '. The resulting
revision IDs are embedded into the executable and will be shown for the ?B (long) and
?BUILD (short) commands.

9. Inovr.shyoucanalso specify which tools to use. For example, the vasidBi8 Mspecifies
the nasm executable to use, with path if needed.

10. If you want to rebuild debugtbl.inc you should compile mktables then run it. While in the
Idebug/source directory, run/fnakec ’ (or use whatever C compiler to build mktables)
then “/mktables ' next. Note that mktables only needs to be used if either the source
files (instr.*) changed or the mktables program itself has been altered. If the assembler and
disassembler tables are not to change then mktables need not be used.

11. Finally, run :/mak.sh ’ from the Idebug/source directory. You may pass environment
variables to it, such asNICOMP_METHOD=exodecr ./mak.sh ’to select Exomizer
compression. You may also pass it parameters which will be passed to the main assembly
command, such ag’fmak.sh -D_DEBUG4 ' to enable debugging messages.

27

https://hg.pushbx.org/ecm/ldebug
https://hg.pushbx.org/ecm/

The mak.sh script expects that the current working directory is equal to the directory that it
resides in. So you'll always want to run it asak.sh ’ from that directory. The same is true
of the make* scripts.

The make* scripts work as follows:
make

calls mak.sh to create debug and debugx
maked

calls mak.sh to create ddebug and ddebugx
maker

calls mak.sh to create only debug
makerd

calls mak.sh to create only ddebug
makex

calls mak.sh to create only debugx
makexd

calls mak.sh to create only ddebugx

ldebug/tmp, ldebug/Ist, and Idebug/bin will receive the files created by the mak script. The
following filenames are for the default when running mak.sh on its own which is to create
debug. (When ddebug, debugx, or ddebugx are created, the names change accordingly.) In the
Idebug/bin subdirectorgdebug.com will be a nonbootable executable (even if ti2EOOTLDR

option is enabled). This executable can safely be compressed using EXE packers such as the
UPX. (In cfg.sh the optiomse_build_shim now controls whethellebug.com is created.

It defaults to disable this output file.) If theBOOTLDRoption is enabledldebug.com

will be a compressed bootable executable (if any compression method is selected), whereas
Idebugu.com will be an uncompressed bootable executable. These bootable executables
must not be compressed using any other programs. Doing that would render the kernel mode
entrypoints unusable. Incidentally, UPX rejects these files because their ‘last page size’ MZ
EXE header field holds an invalid value.

The bootable executables can be used as MS-DOS 6 pré@&¥S , MS-DOS 7/80.SYS
PC-DOS 6/71BMBIO.COM, FreeDOSKERNEL.SYS RxDOS.3 RXDOS.COMor as a
Multiboot specification or Multiboot2 specification kernel. In any kernel load protocol case, the
root FS that is being loaded from should be a valid FAT12, FAT16, or FAT32 file system on an
unpartitioned (super)floppy diskette (unit number up to 127) or MBR-partitioned hard disk (unit
number above 127). In addition, the bootable executables also are valid 86-DOS application
programs that can be loaded in EXE mode either as application or as device driver. (Internally,
all the .com files are MZ executables with a header, but they are named with a .COM file name
extension for compatibility.)

It is valid to append additional data, such as a .ZIP archive, to any of the executables. However,
if too large this may render loading with the FreeDOS load protocol impossible. All the other

28

protocols work even in the presence of arbitrarily large appended data.
3.2.1 How to build the instsect application

1. Clone the mercurial repo from https://hg.pushbx.org/ecm/Idebug or in an existing repo use
‘hg pull ’to update the repo

2. Update the repo witthg up’or‘hg up default ’orany other available commit you
want to build

3. Clonethe other needed repos (Imacros, Idosboot, instsect) from https://hg.pushbx.org/ecm/
or in existing repos usehg fetch ' or the sequence ofhig pull ’then ‘*hg up’to
update the repos. (Usually the additional source repos do not have multiple branches.)

4. Copy the Idebug/source/cfg.sh file to ovr.sh in the same directory
5. Edit ovr.sh to point to the repos

6. Inovr.shyoucan also specify which tools to use. For example, the vasidBi8 Mspecifies
the nasm executable to use, with path if needed.

7. Finally, run ‘/makinst.sh '’ from the Idebug/source directory. You may pass
environment variables to it. You may also pass it parameters which will be passed to the
assembly commands.

The makinst.sh script expects that the current working directory is equal to the directory that it
resides in. So you'll always want to run it agriakinst.sh ' from that directory.

Idebug/tmp, Idebug/lst, and Idebug/bin will receive the files created by the makinst script.
Idebug/bin/instsect.com will be the instsect application, which has boot sector loaders for
FAT12, FAT16, and FAT32 embedded. The default protocol is IDOS and the default kernel name
LDEBUG.COM. Read the instsect help page for instructions on how to use it. Refer to section
14.2 for the instsect help. The help can also be obtained by runnatgect.com /?

from DOS. The kernel name can be modified with the switch to instsect. For instance,
‘instsect.com /f=lddebugu.com a: "installs the loader onto drive A: with the name

set up to load the uncompressed IDDebug.

CurrentIDOS boot32 uses the FSIBOOT4 protocol for an additional stage. This is interoperable
with the upcoming RxDOS version 7.25's use of the FSIBOOT4 protocol, as well as with loaders
that use a different sector for their additional stage (like Microsoft's), or those that do not use
an additional stage (like FreeDOS's).

3.2.2 How to prepare the test suite

The test suite (test/test.py) by default uses gemu. (dosemu2 tends to need more than 5 seconds
to start while gemu manages in 2 seconds or less.)

If the debuggerisrunasaDOS application and gemu is used then a boot image containinga DOS
kernel, shell, autoexec.bat, and quit program must be created. If the build option use_build_gimg

is enabled then calls to mak.sh will create such an image. The script file makgimg.sh carries out

this task.

If the debugger is run as a DOS application and dosemu?2 is used then the DOS installed in
dosemu is used. The -K and -E switches to dosemu2 are used to mount a host directory and
execute the debugger.

29

https://hg.pushbx.org/ecm/ldebug
https://hg.pushbx.org/ecm/

If the debugger is bootloaded (in either gemu or dosemu2) then a boot image with only
the debugger executable and a startup boot script file must be created. If the build option
use_build_bimg is enabled then calls to mak.sh will create such an image. The script file
makbimg.sh carries out this task.

The test script creates symlinks to bin/ and tmp/gemutest/ and tmp/bdbgtest/ on its own. It can
be executed from any directory, as it should find its files based on its own location. The test suite
uses pseudoterminals, gemu or dosemu2, and the default Python unittest module.

Some tests may require having executed the script file test/scripts/mak.sh from within the
test/scripts directory. When booting the debugger or using gemu, this must be run before
makbimg.sh or makgimg.sh is run.

The DPMI tests currently require manual setup, with a directory test/dpmitest/ containing the
dpmitest programs (for dosemu?2) or a diskette image test/dpmi.img containing the programs as
well as the HDPMI host executable (for gemu).

3.3 Build options
_DEBUG

Make the program debuggable. A ‘D’ is usually prepended to the program name. This
means that the program's handlers are only installed within the function run, and are
uninstalled within the function intrtn1_code. This allows debugging everything except this
section. This is intended to be used with a default build of IDebug as the outer debugger.
However, there is nothing preventing usage of a different debugger. To indicate that the
debuggable debugger is running, its default command prompts are prepended by a tilde

~

(To debug everything including the section from run to intrtn1_code, or the DPMI entry
of IDebugX, a lower-level debugger must be used, such as dosemu's dosdebug or other
debuggers that are integrated into emulators.)

_DEBUG_COND

Only takes effectif DEBUG option is also enabled. Allow to enable or disable debuggable
mode within the same process. A ‘C’ is usually prepended to the program name. To
indicate that the debuggable mode is enabled, the debugger's default command prompts
are prepended by a tilde™".

The command-line switch /D+ can be used to start up in debuggable mode. /D- instead
insures to start up in non-debuggable mode. The DCO6 flag 100h can be toggled
subsequently to toggle debuggable mode.

_PM

Make the program DPMI-capable. An ‘X’ is usually appended to the program name.

If possible, the interrupt 2Fh function 1687h is hooked and made to return IDebugX's
entrypoint. Otherwise, the initial entry into protected mode must be traced. Upon entry
IDebugX will install itself as if it is the actual client, initialise itself, then set up the original
client as if that had entered protected mode. The assembler and disassembler will detect
and support 32-bit code segments. Other commands will also use 32-bit addressing to
allow using 32-bit segments. To indicate that the debugger is in protected mode, its default

30

command prompt changes from the dashto6 a hash sign#’. (IDDebugX or ICDebugX
in debuggable mode prepends its tilde to that resulting#.)

_BOOTLDR

Makes the program support being bootloaded. This additionally requires the IDOS iniload
stage wrapped around the MZ .EXE image of the debugger. The mak.sh script prepends
an ‘I to the base filename to create the names for the bootable files. For building debug,
this results indebugu.com andldebug.com . In bootloaded mode, I/O is never done
using DOS, as if INDOS mode was always on. The DOS's current PSP is not switched
during debugger operation. The MCB chain can only be displayed using the DM command
by specifying the start segment explicitly. The BOOT commands are supported, refer to
section 15.11.

_HISTORY

Enables the line editing history for raw terminal and serial input. Defaults to on. Size can be
specified using _HISTORY_SIZE. Whether a separate segment is used can be controlled
using the _HISTORY_SEPARATE_FIXED option. Defaults to an 8 KiB separate segment
buffer.

_MEMREF_AMOUNT

Indicates number of memref structures to include. Default 4 (on). If enabled without
a value, the default (4) is selected. When enabling this option, you most likely
want to first rebuild the assembler and disassembler tables using the command
Jmktables direction stackhinting . (These mktables switches are now
default enabled.) This allows for memrefs to indicate whether an explicit memory
operand is a read or writglifection), as well as for stack accesses likesh , pop,

call ,retn to be recognised in memrefstéckhinting). Memrefs are initialised

by disassembly. Memrefs can be accessed using the access variabREAKEADRO
READLENQO etc. Refer to section 11.16. The access variables are written after an R
command's register dump and disassembly (refer to section 10.32). Access variables can
be accessed using special keywords behindNhef aVALUE x IN y construct (refer

to section 9.8).

Note that memrefs are not always exact. For instance, accesses by some instructions are not
detected (edgdt , sgdt , fsave). Some instructions' accesses are not always correctly
detected, such asnter with non-zero second operand, string instructions spanning
segment boundaries, or instructions usisgafter a write toss that causes disassembly
repetition. Some types of accesses are never detected either, such as GDT/LDT accesses to
load descriptors. The stack access of software interrupt instructions is correctly detected
only when tracing interrupts (Trace Mode set to 1, refer to section 10.44); if the interrupt
call is proceeded past then like any proceeded-past function call it may use more stack
space.

_SYMBOLIC

Enables the symbolic debugging support. This currently defaults to off. Documentation
about the symbolic debugging support is still lacking.

31

Section 4: Getting started with the release

The stand-alone and FreeDOS release packages contain the following files:
In thebin or BIN directory:
Idebugu.com

Uncompressed bootable debugger, build without DPMI support
Idebug.com

Compressed bootable debugger, build without DPMI support
Idebugxu.com

Uncompressed bootable debugger, build with DPMI support
Idebugx.com

Compressed bootable debugger, build with DPMI support
instsect.com

Application to install boot sector loaders, with IDOS loaders that default to load
LDEBUG.CONrom a FAT12, FAT16, or FAT32 file system

Thetmp or SOURCE/LDEBUG/Idebug/tmp directory contains subdirectories for each used
compression method. For example, there is a subdirectory nla#hedThese subdirectories
contain the compressed executabldebug.com and ldebugx.com built with the
corresponding compression method.

NB: The default choice of compression method (LZMA-Izip) is chosen based purely on the
smallest possible executable size. It may be unsuitable for use on low-end systems where it may
take several minutes to decompress the application. In this case, the uncompressed executables
may be used, or those compressed with another method (as foundinghreibdirectories).

In thedoc directory, orDOC/LDEBUG
Idebug.htm
This manual in HTML, preferred form
Idebug.txt
Manual in plain text (FreeDOS package: with CR LF line endings)
Idebug.pdf
Manual in PDF

32

fdbuild.txt

FreeDOS package build instructions
LDEBUG.LSM

LSM file for IDebug FreeDOS package
In the root directory, or alsDOC/LDEBUG
license.txt

Full license texts for IDebug
In the APPINFOdirectory, only for FreeDOS package:
LDEBUG.LSM

LSM file for IDebug FreeDOS package
In thelst or SOURCE/LDEBUG/Idebug/Ist directory:
debug.Ist

Assembly listing corresponding tdebug.com andldebugu.com
debug.map

Assembly map corresponding fibebug.com andldebugu.com
debugx.lst

Assembly listing corresponding tdebugx.com andldebugxu.com
debugx.map

Assembly map corresponding liebugx.com andldebugxu.com

33

5.1

5.2

Section 5: Invoking the debugger

Invoking the debugger in boot loaded mode
The debugger can be loaded as a variety of kernel formats.

The Multibootl and Multiboot2 entrypoints will expect that a kernel command line is provided.
The FreeDOS, RxDOS.3, and IDOS load protocols allow specifying a kernel command line,
but it is optional.

If a kernel command line is detected then its contents are entered into the command line buffer.
Unescaped semicolons are translated into Carriage Returns. Semicolons and backslashes may
be escaped with backslashes.

If no kernel command line is given, the debugger assumes a default. It is equivalent to checking
for a file and label using the IF command (section 10.20), then if found to execute that script file.
The IF condition is likaf exists y Idp/LDEBUG.SLD :bootstartup then and

the subsequent script commang iddp/LDEBUG.SLD :bootstartup (section 10.52).

The filename is howevéDDEBUG.SLCior DDebug builds, and CDEBUG.SLCfor CDebug

builds.

Executing theQ command (section 10.29) makes the debugger uninstall itself then continue
running whatever code the debuggee isin. ExecutinB@®@T QUITcommand (section 15.11)
makes the debugger attempt to shut down the machine. First it will try to call a dosemu-specific
callback. Next it will attempt shutting down with APM. (This works in gemu.) Finally it will
give up if no attempt worked.

Invoking the debugger as an application

The debugger is internally an MZ .EXE style application. It may need MS-DOS version 3 level
features. A few switches are supported:

1?
Show the command help page about invoking the debugger. Refer to section 14.1 for a
copy of that help.

IC
Put the text following this switch into the command line buffer. Unquoted unescaped
blanks indicate the end of the text. Parts may be quoted using single quote marks or double
guote marks. Unescaped semicolons are translated into Carriage Returns. Semicolons,
backslashes, quote marks, and blanks may be escaped with backslashes.

IS

This switch is only used if the symbolic option is enabled. It can be used to set the size of

34

5.3

the symbol tables early, before loading a debuggee application.
/B

Run a breakpoint within the debugger's initialisation.
IF

Enable/disable treating file as a flat binary. Enable if a blank or plus sign follows this
switch. Disable if a minus sign follows this switch. This controls the DCOG6 option 400h.

If enabled, .EXE and .COM files will be loaded as flat binaries even if they contain an
MZ executable header. Writing the files back as flat binaries is also enabled by this. (Note
that the file has to fit into memory for this.) /F implies /E+, but /F+ and /F- do not imply
anything about /E.

IE

Enable/disable setting Stack Segment != PSP for loading flat binaries. Enable if a blank
or plus sign follows this switch. Disable if a minus sign follows this switch. This controls
the DCOG option 800h. If enabled then loading a flat binary file (with filename extensions
such asbin or using the /F switch) will set up a Stack Segment at the end of the process
memory block. That is, in a different segment than the process segment. If disabled, then
flat binaries always get SS = PSP evenif that leaves the stack pointing into the binary image.
/F implies /E+.

v

Enable/disable video screen swapping. Enable if a blank or plus sign follows this switch.
Disable if a minus sign follows this switch. Refer to section 10.48.

After the switches a filename may follow. After the filename, command line contents for the
process to be debugged may follow. These are both passed to the N command. Then, an L
command for loading an application is run.

Executing theQ command (section 10.29) makes the debugger try to terminate the debuggee
application and to then terminate itself. The debugger returns to whatever application called it.

If the TSR command (section 10.45) is used, the debugger patches the parent of the currently
running application to be the debugger's parent. A subsedqdeatnmand will then behave

much like it does in boot loaded mode: The debugger uninstalls itself and continues execution
in the current debuggee context.

Invoking the debugger as a device driver

The debugger's MZ .EXE style executable can also be loaded as a device driver. Loading as a
device driver requires an MS-DOS version 5 level feature. Namely, the loader has to initialise
and pass the pointer to the end of memory available to the device driver. (The debugger attempts
to detect whether this pointer is passed and indicates enough memory, but it is unclear how well
that works.)

Device drivers can be loaded from CONFIG.SYS usirgeVICE=directive. Other loaders
such as DEVLOAD may work too. (DEVLOAD 3.25 specifically needs a patch to fix some
problems keeping track of memory and to allow DEVLOAD to report more than 64 KiB of
memory available to the device driver.)

35

5.4

DOS device loaders generally convert the device driver's command line to allcaps. To work
around this, the debugger will interpret the exclamation mark in a special way: An exclamation
mark indicates to convert the next letter to a small letter, if it is a capital letter. To pass a literal
exclamation mark, double it.

All command line switches of the application mode are also accepted by the device mode
debugger. In particulafC= can be used to pass commands to execute.

The debugger will start up with debuggee client registers set up from the way they were passed
by the device loader. CS:IP will point to a far return instruction in the debugger's entry segment.
The stack will be preserved from what the device loader passed, too. That means running the
debuggee allows to return control to DOS and have it finish installation of the debugger as a
device. Subsequently, DOS and other device drivers and applications can be debugged, just like
when resident in TSR mode.

The device mode debugger can terminate in two different modes. Both require a specific
command letter appended to the Q command.

QD may be used if control did not return to the device loader yet. The debugger checks this
condition by stashing away a copy of all regular registers to compare to their current values.
This includes all GPRs, all segment registers, EIP, and EFL. Also, the debugger's device header
fields for pointing to the next device header are compared to FFFFh. If both match, itis assumed
that we can still modify the request header passed by the device loader. This allows to report
an error and set up an empty memory block to keep, so that the loader will know to discard the
device.

QC may be used if control has returned to the device loader already and the debugger device
has been installed into the system. It requires locating the device header in the chain of devices
that starts with the NUL device in the DOS data segment. It also requires to find the memory
block containing the debugger. It must be either a PSP-alike MCB (self-owned regular MCB
containing exactly the debugger allocation) or 8D‘(System Data) container MCB with one

or more sub-MCBs (one of which contains exactly the debugger allocation). If these conditions
are met, the debugger can be quit. It re-uses parts of the TSR application mode termination.

NOTE: Using QC currently assumes that no system file handles are left allocated to the
placeholder character device that the debugger installs to keep itself resident. This device is
currently called LDEBUGSS If this rule is not followed the system might crash.

Invoking the test suite

Use the test.py script in the test subdirectory. Use the -v switch to do verbose output. Specify test
name patterns to use with -k, or omit to run all tests. The script uses the following environment
variables:

build_name
Build name to use. Either debug (default), debugx, ddebug, ddebugx, cdebug, or cdebugx.
test_booting

If set to a nonzero number, boot into the debugger. Otherwise, a DOS is loaded and the
debugger is run as an application. Some tests are booting only, some other tests are non-
booting only. The unsupported tests are skipped automatically.

36

test_initialise_commands

Commands to be executed by the test set up method right after establishing serial
I/0. Semicolons are replaced by Carriage Returns. This should include the command
‘r dco6 clr= 100 ’if testing ICDebug to disable its debuggable mode.

test_sleepduration

Floating point number which defines the default sleep duration, in seconds, for read calls
that do not override it. This defaults to 0.05.

test_addsleepduration

Floating point number which defines a duration, in seconds, to add to the duration of
overridden read calls. This defaults to 0.0.

DEFAULT_MACHINE
gemu or dosemu
DOSEMU
dosemu executable to use
QEMU
gemu executable to use
DEBUG
If set to a nonzero number, dump all serial I/0O and all debugging messages.

The most common reason for random failures is timing. If this is suspected to be the case, the
duration variables allow increasing the time spent waiting on debugger output. They were added
to replace the workflow of editing durations manually in the test script.

37

6.1

6.2

6.3

Section 6: Interface Reference

Interface Output

The debugger provides a line-based text interface. The interface is written to DOS standard
output by default. If INnDOS mode is entered or the debugger is bootloaded then the interface is
written to the terminal using interrupt 10h. Serial /0O can be enabled to write the interface to
the serial port.

Interface Input

The default command prompt indicates that a command may be entered. It is a dhagh *
default, or a hash sigr#' when DebugX is in Protected Mode. An exclamation pointis
prepended by a DOS application debugger (not bootloaded) while DOS's InDOS flag is set. A
tilde ‘~’ is prepended for DDebug, or CDebug while in debuggable mode.

If DOS command line input is done as raw input (eg if DCO option 800h is set) or the input is
from a raw (ROM-BIOS) terminal, or from a serial port, then the line editing history is enabled.
Prior commands may be recalled using the Up arrow key. The Down arrow key may also be used
to reverse the recall. As soon as any prior or new line is edited the history recall is disabled.

Long command output may be paged. In that case, once a screenful has been displayed,
a ‘[more] ’ prompt is displayed to pause the output. After pressing any key the output is
continued. If Control-C is pressed, the current command is aborted.

Enabling serial I/O

Refer to section 11.9 for the serial configuration variables. Setting the DCO flag 4000h enables
serial 1/0. Upon enabling serial I/0O a prompt is sent to the serial port. This prompt looks like
the following example:

IDebug connected to serial port. Enter KEEP to confirm.

(The name of the debugger is modified to indicate DebugX, DDebug, DDebugX, CDebug, or
CDebugX. The prompt indicator is= ' for DDebug or CDebug while in debuggable mode.)

If the keep prompt is successfully displayed by the serial terminal and is responded to with the
requestedKEEP keyword then serial 1/O is established.

If the confirmation does not occur after a timeout then serial I/O is disabled again. The timeout
defaults to about 15 seconds. In this case the debugger itself clears the DCO flag 4000h.

If the DCO flag 4000h is cleared then serial I/O is disabled.

38

6.4 Register dumping

6.5

The R command (refer to section 10.32) without any parameters dumps the current register
values. Then it disassembles a single instruction, or occasionally more than one. The register
dump looks like this by default:

-r

AX=0000 BX=0001 CX=58A0 DX=0000 SP=0800 BP=0000 SI=0000 DI=0000
DS=1BEC ES=1BEC SS=35A9 CS=1BEC IP=0140 NV UP EI PL ZR NA PE NC
1BEC:0140 8CCS8 mov ax, cS

If the ‘RX command was used to switch on 32-bit register dumping, then the register dump
looks like this:

-r

EAX=00000000 EBX=00000001 ECX=000058A0 EDX=00000000 ESP=00000800 EBP=0000000C

ESI=00000000 EDI=00000000 NV UP EI PL ZR NA PE NC
DS=1BEC ES=1BEC SS=35A9 CS=1BEC FS=0000 GS=0000 EIP=00000140
1BEC:0140 8CCS8 mov ax, CS

The RE command (section 10.32.1) runs the RE buffer commands. The default RE buffer content
is a single @Rcommand. After running the program being debugged, usually the RE buffer
commands are also being run. This includes a step with the T, TP, or P commands. (Section
10.43, section 10.43.1, section 10.28.) It also includes a run with the G command. (Section
10.16.) Further, a permanent breakpoint which is configured as a pass point being passed also
runs the RE buffer commands. (Section 10.5.)

Setting the flags 1_0000 or 4_0000 in the DCOS3 variable enables register change highlighting.
When output is written to DOS standard output or to a serial port then ANSI escape sequences
are used to highlight. Specificalljyx1B[7m ’is used to reverse video and therIB[m ’to

reset the colours.

For DOS standard output it may be needed to install an ANSI escape sequence parser.
For serial I/O the terminal connected to the debugger is expected to handle the escape sequences.

If the output is to a terminal using interrupt 10h and DCO3 flag 2_0000 is clear and the terminal
is detected as functional then highlighting is done using interrupt 10h video attributes.

The functionality check is done by calling interrupt 10h service 03h. If the indicated current
column is nonzero then the terminal is considered functional. (Current dosemdanrb
terminal mode is detected as not being functional.)

If this check fails or the DCO3 flag 2_0000 is set then escape sequences are written using
interrupt 10h.

Memory dumping

Another basic command is the D command (section 10.9). It is used to dump memory contents.
For example, to dump part of a program:

39

-d

1BEC:0140 8C C8 31 DB 05 70 14 50-53 CB 70 03 91 67 BC 45 ..1..p.PS.p..0.E
1BEC:0150 3F 10 C1 6F F9 70 BA 22-7C 71 C3 72 0A 81 0A 81 ?..0.p."|q.r....
1BEC:0160 47 74 68 76 6C 77 32 72-A7 2F BD 78 4B 16 9F 7B Gthviw2r./.xK..{
1BEC:0170 C9 2B 09 37 OA 81 81 7D-E2 7E AC A0 00 00 00 00 .+.7...}.~......
1BEC:0180 10 49 00 00 OF 00 00 00-00 00 00 00 10 49 00 Q0 .I........... l..
1BEC:0190 OF 00 00 00 F8 30 80 00-00 00 00 00 80 00 00 QO0..........
1BEC:01A0 07 00 00 00 07 00 00 00-00 00 00 00 00 00 00 QO
1BEC:01BO 00 00 00 00 97 65 00 00-00 00 00 00 00 00 00 Q0e..........

Or, to dump the stack as words:

-dw ss:sp

header 0 2 4 6 8 A C E 0123456789ABCDEF
35A9:0800 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0810 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0820 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0830 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0840 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0850 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0860 0000 0000 0000 0000-0000 0000 0000 0000
35A9:0870 0000 0000 0000 0000-0000 0000 0000 0000

Disassembly
The U command is used to disassemble one or several instructions. Example:

-u

305C:0000 8CDO mov ax, Ss
305C:0002 8CDA mov dx, ds
305C:0004 29D0 sub ax, dx
305C:0006 31D2 xor dx, dx
305C:0008 B90400 mov cx, 0004
305C:000B D1EO shl ax, 1
305C:000D D1D2 rcl dx, 1
305C:000F E2FA loop 000B
305C:0011 50 push ax
305C:0012 01EO add ax, sp
305C:0014 83D200 adc dx, +00
305C:0017 83COO0F add ax, +OF
305C:001A 83D200 adc dx, +00
305C:001D 24FO0 and al, FO
305C:001F 83FAO01 cmp dx, +01

Loading the debuggee

A program to examine can be loaded using the N and L commands. If the debugger is loaded
as a DOS application with a filename specified in its command line, it will run the N and L
commands on its own.

40

6.8

6.9

The N command sets up some buffers internal to the debugger. One of those specifies the
pathname of the executable file to load. The pathname must include the filename extension, if
any. The pathname must be relative to the current directories at the time the L command runs,
or it must be absolute. The tail of the N command after the pathname is used as the command
line tail for a new debuggee process.

The L command without any parameters attempts to load the program specified to the last N
command into a new process. If the L command does not display any messages this indicates
success.

Running the debuggee
Once a program is loaded into the debugger it can be run in several ways:
G command

Runs at full speed until a breakpoint is encountered. Temporary breakpoints can be
specified to the G command. Refer to section 10.16.

T command

Traces a single instruction, except for software interrupts which are by default run at full
speed with a breakpoint after them. Refer to section 10.43.

P command

Either runs at full speed with a breakpoint behind the current instruction, or traces a single
instruction. Software interrupts, call instructions, repeated string instructions, and loop
instructions are proceeded past by using a breakpoint. Refer to section 10.28.

TP command

Like the T command except that repeated string instructions are proceeded past like the P
command would. Refer to section 10.43.1.

All run commands support auto-repeat: Submitting an empty line to the debugger (blanks
allowed but no comment) will make the debugger run the last command again. For the G
command auto-repeat, the specified temporary breakpoints will be used again. Refer to section
10.1.

Permanent breakpoints can be set up and changed using the B commands. They can be
configured to behave as pass points as well. Refer to section 10.5.

The ?RUN help page in section 15.8 lists some additional features of the T, P, and TP commands.

Help

The online help can be accessed using tHebmmand. Refer to section 15 for copies of the
online help.

41

7.1

Section 7: Debugging the debugger itself

There are debuggable builds of the debugger, called IDDebug (unconditionally debuggable) and
ICDebug (conditionally debuggable).

The debuggable mode works by installing the mandatory interrupt handlers of the debuggable
debugger only within thertin ’ function, so as to return the control flow to this instance when it
runs its debuggee code. On return into this instance, it uninstalls its mandatory handlers again.
This mechanism allows to debug most of the debugger using a different instance of IDebug (or
potentially another debugger).

In debuggable mode, an additional command is supported, the BU command (which stands for
"Break Upwards"). It will run a breakpoint within the debugger's code segment which will break
into the other debugger. Its code was updated so it will break at the command dispatcher after
the label cmd4. This means if the outer debugger is also an IDebug then it can be instructed to
skip to the next command being dispatched by entering the comn@ang *.

IDDebugX (or ICDebugX) can also install its exception areas into the other IDebugX instance.
For this, the other debugger needs to have runldSTALL AMIS’ command. Then the
debuggable debugger can run itsISTALL AREAS. Afterwards, faults in the debuggable
debugger will make the other IDebugX indicate the area of the fault.

After IDebugX has caught a faultin the CODE or CODE2 segment, it can be instructed to resume
the IDDebugX (or ICDebugX) command input loop (cmd3) by runninga0 command. If

‘G=1 is used instead, an additional linebreak will be displayed by the debuggable debugger
before it starts prompting for input. This is useful if the fault occurred with some partial output
currently displayed. The offset O and offset 1 entries are also supported by non-DPMI builds
and can of course be used at any point in time other than after a fault, too.

There are some DCOG flags to control breakpoints and entering ICDebug's debuggable mode in
the functions debuggerexception and putrunint. They can be displayed u8@g@ommand.

Other than for the most trivial sessions it is recommended to control the outer debugger by serial
I/0O, separately from the 1/O of the debuggable debugger. If the latter also should be controlled
by serial I/0 then two different ports can be used. The terminal connected to the outer debugger
can also be set up for TracList, the IDebug companion application which traces a listing file. For
instance, if IDDebugX is to be traced, TracList should be run with the Idebug/Ist/ddebugx.Ist
listing file.

Initialising the debuggable debugger

To allow the debuggable debugger to relocate and initialise its code sections, the outer debugger
should generally start running the debuggable debugger with a pisommand. The
debuggable debugger can then return control to the outer debugger usBld tesmmand.

If the initialisation of the debuggable debugger is to be debuggedBhHewitch may be of use.

42

Otherwise, note that the NEC V20/V30 and 486 CPU detections may fail when traced using an
outer IDebug.

The NEC detection may lock the machine up if its specially encopgep ‘cx ’is traced or run

with a breakpoint directly behind it. To allow to continue tracing after it, a breakpoint must be
setup atthejtxz ’instruction or later. There must not be a breakpoint onthev sp, ax ’
instruction. The pop c¢x ' instruction must not be traced with the Trace Flag set. Failure to
honour these requirements may lock up the NEC CPUs, for example the one used in the HP
95LX, which then may require resetting the system with Ctrl-Shift-On. This also resets the
system date and time.

The 486 detection may wrongly detect a 386 instead of a 486+ when traced on some systems,
such as some revisions of dosemu(2).

43

8.1

8.2

8.3

Section 8: Parameter Reference

Number

Plain numbers are evaluated as expressions. Refer to section 9. Expressions consist of any
number of the following:

* Unary operators
* Binary operators
» Operands

Plain number parsing for an expression continues for as long as a valid expression is continued.
For example, in the comman@®‘ 100 + 20 L 10’ the starting address (its offset to be
specific) is calculated as ‘100 + 20’. Then the expression evaluator encountdr thieich is

not a valid binary operator. Plain number expression parameters are used by a lot of commands.
Sometimes, the plain number parameter type is called ‘count’ or ‘value’.

Address

An address parameter is calculated with a default segment. First, a plain number is parsed. If
it is followed by a colon, the first number is taken as segment, and then another number is
parsed for the offset. If the first number is specified as a pointer type using the type keyword

‘POINTER then its upper 16 bits are taken as segment and its lower 16 bits are taken as the
offset. Otherwise, the first number is used as the offset. Offsets may be 16 bits or 32 bits wide,
though 32-bit offsets are only valid for DebugX and only in 32-bit segments.

If a segment or pointer type expression are prefixed by a dollar §igthen the specified
segment is always taken as a Real/Virtual 86 Mode segment, even if DebugX is in Protected
Mode. Otherwise, in Protected Mode a segmented address refers to a selector.

Instead of an address, the address parameter may consist of the taken keywKieNor T for

taken, andNOTTAKENr NTfor not taken. This is only valid if the currens:(e)ip points at

a conditional branch instruction, and will cause a parsing error otherwise. The taken keywords
will evaluate to a segmented address pointing at the target of the conditional branch. The not
taken keywords will evaluate to a segmented address pointing to behind the conditional branch
instruction.

Address parameters are used by a lot of commands.
Range

A range parameter may have a default length, or it may be disallowed to omit a length. Parsing
a range starts with parsing an address. Then, if the end of the line is not yet reached, an end for
the range may be specified. The end may be a plain number, which is taken as the offset of the

44

8.4

8.5

8.6

8.7

8.8

last byte to include in the range. The address of the last byte to include must be equal or above
the address of the first byte that is included in the range.

The end may instead be specified with ahdr * LENGTHkeyword. In that case, the keyword

is followed by a plain number and an optional item size keyword. A length of zero is not valid.
The item size keyword may bBYTES, ' WORDS DWORDSr ‘ PARAS. For the latter three,

the plain number will be multiplied by 2 or 4 or 16. TH&YTES keyword is only provided for
symmetry; currently all commands taking ranges default to byte size fot EléGTHnumber.

Forexample, the commanDD 100 LENGTH 4 DWORDMEIdump memory from address
0100h (in the current data segment) in dword units, for a length of 4*4 = 16 bytes. The item size
keywords were introduced primarily for thBWand ‘DD commands (refer to section 10.9),

but they can be used for any command that accepts a range.

Range parameters are used by a lot of commands.

Range with LINES keyword allowed

This type of parameter is an extension of the range parameter type. Both the default length and
the explicit length may be specified as a number of lines instead of an address length.

An explicit ‘LINES’ length is specified by prepending alo’ ‘or LENGTHkeyword (like an
address length) but then specifying a unit BNES’ instead. The number of lines specified
must be nonzero and below 8000h.

The exact details of how a lines length is used depend on the command in question. A range with
lines length is allowed for the U command (section 10.46) and the D/DB/DW/DD commands
(section 10.9).

List

A list is made up of a sequence of items. Each item is either a plain number or a quoted string.
List parsing continues until the end of the line. Each plain number represents a single byte.
Quoted strings represent as many bytes as there are quoted. A quoted string can be delimited by
single quote$ or double quotes. If the used delimiter quote mark occurs twice back to back
while reading the quoted string, this is taken as an escape to include the delimiter mark itself
as a byte of the string. List parameters are used by the E, F, and S commands. Refer to section
10.14, section 10.15, and section 10.41.

List or range

A list or range can be specified for this parameter. The range is identified by a leBRANGSE
keyword. Otherwise, a listis parsed. A list or range parameter is as yet used by the S command
and the F command, refer to section 10.41 and section 10.15.

Keyword

A keyword is checked insensitive to capitalisation. Keywords depend on each command. Only
the keywords used to specify a range's length are shared by all commands that parse ranges.

Index

An index is a plain number that specifies a breakpoint index. It allows operating on one specific
breakpoint. The index parameter type is used by the B commands, refer to section 10.5.

45

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

Segment

A segment is a plain number for parsing purposes. The segment parameter type is used by the
DM command and some BOOT commands, refer to section 10.11 and section 15.11.

Breakpoint

Each breakpointis a single address, which defaults to the code segment. The address may instead
be specified starting with an AT sigi@, followed by a blank or an opening parenthesis. In

that case, the following plain number specifies the non-segmented linear address to use. The
breakpoint parameter type is used by the B and G commands, refer to section 10.5 and section
10.16.

Label

A label is a (not quoted) string keyword. It may start with an optional colon. A label can be used
by the GOTO and Y commands, refer to section 10.17 and section 10.52.

Port

A port is a plain number for parsing purposes. The port parameter type is used by the | and O
commands, refer to section 10.19 and section 10.27.

Drive

A drive may be either an alphabetic letter followed by a colon, or a plain number. The number
zero corresponds to drive A: then. The drive parameter type is used by the L and W sector
commands, refer to section 10.23 and section 10.50. The N and Y commands (section 10.26 and
section 10.52) also accept drive parameters, but only as part of their filenames. These must be
in the drive letter followed by colon format.

Sector

A sector is a plain number, which can be equal to any 32-bit value. The sector parameter type is
used by the L and W sector commands, refer to section 10.23 and section 10.50. Some BOOT
commands also use sector numbers, refer to section 15.11.

Condition

A condition is a plain number. It is evaluated either to nonzero (true) or zero (false). The
condition parameter type is used by the IF command, as well as the P, TP, and T commands
when specified with aVHILE keyword. The BW and BP (with aVHENeyword) commands

also use conditions. Refer to section 10.20, section 10.28, section 10.43, section 10.5.3, section
10.5.1. The length of a condition for B commands is limited by how much space is left in the
permanent breakpoint conditions buffer. This buffer currently defaults to 1024 bytes. Itis shared
for all conditions of all permanent breakpoints.

Register

A register specifies an internal variable of the debugger. Most prominently these include the
debuggee's registers as stored by the debugger in its data segment. A register or variable may
be an operand in a plain number's expression. However, several forms of the R command also

46

8.17

8.18

use register parameters. These allow reading and writing the register values. Refer to section
10.32.

Command

Command is a special parameter type that is used only by the RE.APPEND, RE.REPLACE,
RC.APPEND, and RC.REPLACE commands (section 10.32.2 and section 10.32.4). It is read
verbatim and entered into the RE or RC command buffer. Semicolons within a command
parameter are not parsed as end of line comment markers. Instead, they are converted to CR (13)
codes in the buffer. This delimits the parts of the parameter into several commands. A semicolon
may be prefixed by a backslash to escape it and thus enter a literal semicolon into the buffer.

ID

ID is a special parameter type that is used only by the BP and Bl commands (section 10.5.1 and
section 10.5.2). Leading and trailing whitespace is ignored. An ID can be empty, or contain up to
63 bytes of data. The length of an ID is also limited by how much space is left in the permanent
breakpoint ID buffer. This buffer currently defaults to 384 bytes. It is shared for all IDs of all
permanent breakpoints.

47

9.1

9.2

9.3

9.4

9.5

9.6

Section 9: Expression Reference

Literals

Literals consist of one or more digits. A literal must start with a digit or hash sign *
Embedded underscores ‘are skipped. Literals must not overflow 4 giga binary minus 1, that
is FFFF_FFFFh.

The default base for literals is sixteen (hexadecimal). A hash gigndicates a base change.

If nothing preceeds the hash sign the base is changed to ten (decimal). Otherwise, the number
before the hash sign is read in the prior base and taken as the base to change to. The base must
be between 2 and 36. Multiple hash signs are allowed in the same literal.

String literals

String literals consist of up to 4 bytes. The bytes are specified starting with a hashksign
followed by a single-quote matkor double-quote mark. The same quote mark is used to end

the string literal. If the delimiter quote mark occurs twice back to back while reading the string
literal, that is handled as an escape to include the delimiter mark itself as a byte. Strings are read
in a little-endian order, same as NASM does. That is, the first byte of a multi-byte string is read
into the lowest byte of the numeric value. This matches the order obtained by writing the string
to memory and reading it as a word, 3byte, or dword.

Variables

A variable consists of a variable name, possibly followed by parentheses with an index
expression. Variable names are capitalisation insensitive. Variables differ in size, there are
variables consisting of 8, 16, 24, or 32 bits. Variables can be written to using the R command.
Some variables are read-only. A few variables allow writing some but not all bits.

Indirection

Indirection is indicated by square brackets. Within the brackets an address is parsed, defaulting
tods asthe segment. The size of the indirect access can be specified with a type specifier before
the brackets. The usual types &€TE WOR[BBYTE, andDWORILike variables, indirection

terms can be written to using the R command.

Parentheses

Parentheses can be used to force a different order of operations.

LINEAR keyword

A keyword readind_INEAR introduces an address to parse. The address defaul$sds the
segment. The address may be separated from subsequent text with a comma. If the expression

48

9.7

9.8

9.8.1

is to be separated from a subsequent element using a comma lafiE AR address then two
commas are needed. Depending on the segmentation scheme of the current mode the segmented
address is converted into a linear address. If DebugX is in Protected Mode and the segment base
cannot be determined the expression is rejected as an error.

DESCTYPEKeyword

This keyword introduces a descriptor type read. The following expression is taken to be a selector
specification. This keyword is only valid for (DPMI-enabled) IDebugX builds, and only while
in Protected Mode.

The value is read from ddr ' instruction on the following expression, and shifted to the right
by 8. If the instruction indicates that the selector does not refer to a valid descriptor then the
result of this keyword is zero.

VALUE IN construct

A keyword reading VALUE starts a VALUE IN construct. Between
the VALUE and subsequent IN keyword there is a single value
expression, or a range of the fornfFROM expression TO expression or
FROM expression LENGTH expression . Next follows the IN keyword. After
this, there is a list of match ranges. A match range is either a single
value expression, or a range of the folRROM expression TO expression or
FROM expression LENGTH expression . After each match range a comma indicates
another match range follows.

In a FROM TGQpecification the first expression has to evaluate to unsigned below-or-equal
the second expression. IFROM LENGT8specification the length must be nonzero. If these
conditions are not met then the value or match range in question is always considered as not
matching.

The entireVALUE [N construct evaluates to how many of the match ranges match the value
range. The construct only evaluates to zero if no matches occurred. A nonzero value indicates
that at least one match occurred.

VALUE IN construct keywords

Instead of a value or match range as specified here, the keyaxECUTINGnay be specified.
This expands to the following input:

FROM LINEAR cs:eip LENGTH abo - eip

If the MEMREF_AMOUNbUIild option is enabled and paired with tlogrection and
stackhinting switches to mktables then additional keywords are availabléAmUE IN
match ranges. That is, these keywords must be specified behihd toed cannot be specified
between th&/ALUEandIN .

These keywords are as follows:
READING

Expands to a comma-separated list BROM readadrO LENGTH readlenO
constructs, for every read access variable pair (refer to section 11.16).

49

9.9

9.10

WRITING

Expands to a comma-separated list BROM writadrO LENGTH writlenO
constructs, for every write access variable pair (refer to section 11.16).

ACCESSING
Expands t(READING, WRITING, EXECUTING

Conditional ?? :: construct
The ternary conditional operator takes three operands. It is the only ternary operator.

The first operand, the condition, is specified beforexhdeyword. Note that th&? keyword
must be terminated by a blank or an opening square bracket or round parenthesis.

The second operand is specified betweerPth&eyword and the: keyword. Its value is used
as the construct's return value if the condition is true.

The third operand is specified after the keyword. Its value is used as the construct's return
value if the condition is false.

The conditional operator can be nested freely. The conditional operator must not be combined
into the R command's assignment operator ir . The third operand may be separated from
subsequent text with a comma. If the expression is to be separated from a subsequent element
using a comma after a conditional's third operand then two commas are needed.

Any side effects that may happen from parsing and reading the second operand or the third
operand will always happen, even if the operand in question is not selected as the result by the
construct.

Expression side effects

Some uses of the expression evaluator may have side effects. These side effects may happen
even if the parsing of an expression or a command ultimately fails. As a special case, side effects
may occur up to twice if a machine mode command (section 10.25) is parsed.

The ternary?? :. operator and th& ALUE IN construct will both always evaluate every
operand that they're given, even if that operand is not selected as the result or does not contribute
to the match count.

Possible side effects include:
* LFSR and RLFSR variables will be stepped once each time they're read.

» Indirection can read access arbitrary memory in the current mode, making it possible to
affect memory-mapped I/O if such memory is visible to the debugger. Other variables may
also read memory, but not as arbitrary as indirection.

» Ifanaddress parsed within an address parameter or in indirection biNE&AR construct
includes a dollar sign prefixed segment or pointer type expression, then IDebugX may
request a selector from the DPMI host.

» If the symbolic build option is enabled, symbol table access in XMS or 86 Mode memory
may occur.

50

Section 10: Command Reference

10.1 Empty command - Autorepeat

Entering an empty command at an interactive prompt results in autorepeat. Empty means no
content except for blanks. A line starting with a semicolon comment is not considered empty.
Interactive prompts for this purpose include:

» the debugger as a DOS applicatiomt (21h)
» the debugger in INDOS mode or as a bootloaded progmraml®h /int 10h)
» the debugger across a serial port (port 1/0)
Input that does not count as an interactive prompt includes:
» reading from a file redirected as stdin using D@8 (21h)
* reading from a Y script file using DO$¢ 21h)
» reading from a Y script file while bootloadem{ 13h)
» reading from the command line buffer
* reading from the RE buffer
Autorepeat is not supported by all commands. The following commands support autorepeat:
D/DB/DW/DD

Continues memory dump behind the last prior dumped position. Continues with the same
element size as the prior dump. As for if the command is executed with an address lacking
a length, the default length is used. (It defaults to 128 bytes, refer to section 11.4.)

DZ/D$/D#/DW#

Continues string dump behind the last prior dumped string. Continues with the same type
of string as the prior dump.

DX

Continues memory dump.

Repeats a step running the debuggee. An equals address given to the prior Go command is
not used again. The same G breakpoints as used by the prior Go command are used (same
as G AGAIN). The exception is that wherever a breakpoint matcheS$WE)IP at the

start of the command's execution, it is skipped once.

51

10.2

Repeats a step running the debuggee. An equals address given to the prior Proceed
command is not used again. A count given to the prior Proceed command is not used again,

autorepeat always runs as if not given a count. (That means the PPC variable is used as the
effective count. Refer to section 11.3.)

Repeats a step running the debuggee. An equals address given to the prior Trace command
is not used again. A count given to the prior Trace command is not used again, autorepeat
always runs as if not given a count. (That means the TTC variable is used as the effective
count. Refer to section 11.3.)

TP

Repeats a step running the debuggee. An equals address given to the prior Trace/Proceed
command is not used again. A count given to the prior Trace/Proceed command is not used
again, autorepeat always runs as if not given a count. (That means the TPC variable is used
as the effective count. Refer to section 11.3.)

Repeats disassembly behind the last prior disassembled instruction. As for if the command
is executed with an address lacking a length, the default length is used. (It defaults to 32
bytes, refer to section 11.4.)

? command
Online help 72
The question mark command (?) lists the main online help screen.

There are additional help topics that can be listed by using the question mark command with an
additional letter or keyword. These keywords are as follows:

Registers ?R

Flags ?F
Conditionals ?C
Expressions ?E
Variables ?V

R Extended 7?RE

Run keywords ?RUN
Options pages ?OPTIONS
Options ?0

Boot loading ?BOOT
IDebug build ?BUILD
IDebug build ?B

IDebug sources ?SOURCE
IDebug license ?L

The full help pages are listed in section 15.

52

10.3 : prefix - GOTO label

A leading colon indicates a destination label for GOTO, see section 10.17.

10.4 A command - Assemble
assemble A [address]

Starts assembly at the indicated address (which defaults to CS segment), or if no address is
specified, at the "a_addr" (AAS:AAQO variables).

Assembly mode has its own prompt. Entering a single dot (.) or an empty line terminates
assembly mode. Comments can be given with a prefixed semicolon. In assembly mode,
whereever an immediate number occurs an expression can be given surrounded by parentheses
(‘and). In such expressions, register names like AX are evaluated to the values held by the
registers at assembly time. To refer to a register as an assembly operand, it must occur outside
parentheses.

10.5 B commands - Permanent breakpoints

There are a fixed number of permanent breakpoints provided by the debugger. The default is
to provide 16 permanent breakpoints. They are specified by indices ranging from 00 to OF. A
breakpoint can be unused, used while enabled, or used while disabled. A breakpoint that is in
use has a specific linear address. It is allowed, though not advised, for several breakpoints to be
set to the same address.

When running the debuggee with the commands G, T, TP, or P, hitting a permanent breakpoint
stops execution, and indicates in a message "Hit permanent breakpoint XX" where XX is
replaced by the hexadecimal byte index of the breakpoint. If the breakpoint counter is not equal
to 8000h when the breakpoint is hit, then the "Hit" message is followed by a "counter=YYYY"
indicator. If the breakpoint ID is not empty, then the ID is shown with an "ID: " prefix. The

ID is shown either on the same line as the "Hit" message, or on the next line if the ID exceeds
28 bytes. After that message a register dump occurs, same as for default breaking for the Run
commands.

The exceptions are as follows:

» If the CS:(E)IP at the first step of a G command matches any breakpoints, then G does
a TP-like step with all breakpoints other than the "cseip”-breakpoint written, while the
"cseip"-breakpointis not written. After that, the "cseip"-breakpointis written and execution
resumes as normal for G.

» If T.NB or TP.NB or P.NB is used, no permanent breakpoints are written at all.

 If T.SB or TP.SB or P.SB is used, then during the first step no permanent breakpoints
are written. If a counter higher than 1 is given, then during subsequent steps permanent
breakpoints are written.

Each breakpoint has a breakpoint counter, which defaults to 8000h if not set explicitly by the
BP or BN commands. The breakpoint counter behaves as follows:

» If (counter & 3FFFh) equals zero then the counter is considered to be at a terminal state.

» If the point breaks while the counter is not at a terminal state, then the counter is

53

10.5.1

10.5.2

decremented.
» If the counter is decremented to O or 4000h, then the point is hit.

» If the counter is decremented to 8000h or CO00h, or was already at either count without
being decremented, then the point is hit.

» If the point is not hit but the bit (counter & 4000h) is set, then the point is passed.

The point being passed means that during running the debuggee with a Run command, execution
is not stopped, but a message indicating "Passed permanent breakpoint XX, counter=YYYY" is
displayed. As for the "Hit" message the ID, if any, is also shown. After that message, a register
dump occurs. Then execution is continued in accordance with the command that is running
debuggee code.

Each breakpoint can have a breakpoint condition. If the condition expression evaluates to false
when the point breaks, then the point is not considered hit or passed. The breakpoint counter is
not stepped then either.

BP command - Set breakpoint

set breakpoint BP index|AT|NEW address
[[NUMBER=]number] [WHEN=cond] [ID=id]

BP initialises the breakpoint with the given index. It must be a yet unused breakpoint. If the
index is specified as the keyword NEW, the lowest unused breakpoint (if any) is selected. If
there is the keyword AT instead of an index or a keyword NEW, then an existing breakpoint at
the same linear address is reset, or a new one is added (same as if given the NEW keyword).

The address can be given in a segmented format, which defaults to CS, and which in DebugX is
subject to either PM or 86M segmentation semantics depending on which mode the debugger
is in. The address can also be given with an @ specifier (followed by an opening parenthesis
or whitespace) in which case it is specified as the 32-bit linear address. Debug without DPMI
support limits breakpoints to 24-bit addresses, of which 21 bits are usable.

The optional number, which defaults to 8000h, sets the breakpoint counter to that number.

The optional WHEN keyword introduces a breakpoint condition. If the breakpoint is reached
then the condition, if specified, is checked before stepping the counters. If the condition is false
at that point the point is not considered hit or passed and its counter is not stepped.

There is an optional OFFSET keyword (not shown in the example) which allows overriding the
breakpoint's preferred offset. Refer to section 10.5.4 for detalils.

The optional ID keyword allows setting the breakpoint ID. The ID is displayed by BL and when
a breakpoint is hit or passed. The default ID is an empty ID. Note that the ID extends for the
remainder of the line. There cannot be a breakpoint counter number nor WHEN condition nor
OFFSET after the ID keyword.

Bl command - Set breakpoint ID
set ID Bl index|AT address [ID=]id

Bl sets the breakpoint ID of the specified breakpoint. The ID is displayed by BL and when a
breakpoint is hit or passed. The ID may be specified as empty.

54

10.5.3

10.5.4

10.5.5

10.5.6

10.5.7

10.5.8

10.5.9

BW command - Set breakpoint condition
set condition BW index|AT address [WHEN=]cond

The BW command sets the breakpoint condition. If the WHEN keyword and the condition are
absent then the condition is reset. That means the point is no longer conditional.

BO command - Set breakpoint preferred offset
set offset BO index|AT address [OFFSET=]number

The BO command sets the breakpoint preferred offset. The preferred offset is used only by the
BL command. It is used to determine the segmented address to display. The offset is a word
variable for Debug and a dword variable for DebugX. If the OFFSET keyword and the number
are absent then the offset is disabled, as if the breakpoint was specified with a linear address.
(Internally this is done by setting the offset to all 1 bits. The offset can be explicitly set to FFFFh
(Debug) or FFFF_FFFFh (DebugX) for the same effect.)

BN command - Set breakpoint number
set number BN index|AT address|ALL number

BN sets the breakpoint counter of the specified breakpoint with the given index, or all used
breakpoints when given the keyword ALL, or the first breakpoint with a matching linear address
when given the AT keyword. The number defaults to 8000h.

BC command - Clear breakpoint
clear BC index|AT address|ALL

BC clears the specified breakpoint with the given index, or all breakpoints when given the
keyword ALL, or the first breakpoint with a matching linear address when given the AT keyword.
This returns the specified breakpoint (or all of them) to the unused state. Any associated ID or
condition is deleted by BC too.

BD command - Disable breakpoint
disable BD index|AT address|ALL

Given an index or the keyword ALL or the keyword AT (like BC), BD disables breakpoints that
are in use. A disabled breakpoint's address is retained and BP will not allow initialising it anew
(except with AT), but it is otherwise skipped in breakpoint handling.

BE command - Enable breakpoint
enable BE index|AT address|ALL
Like BD, but enables breakpoints.

BT command - Toggle breakpoint
toggle BT index|AT address|ALL

Like BE and BD, but toggles breakpoints: A disabled breakpoint is enabled, while an enabled
breakpoint is disabled.

55

10.5.10

10.5.11

BS command - Swap breakpoint
swap BS index1 index2

This command is provided to allow re-ordering existing breakpoints. It takes two indices both
of which must refer to valid breakpoints. However, it is allowed to specify the index of an
unused breakpoint for either of the parameters (or even both). All data associated with the two
breakpoints is swapped.

BL command - List breakpoints
list BL [index|AT address|ALL]

BL lists a specific breakpoint given by its index, or all used breakpoints if given the keyword
ALL or given neither an index nor the keyword. When given the AT keyword, all breakpoints

with a matching linear address are listed. (This differs from all other B commands, which only
select the first matching breakpoint when the AT keyword is given.)

When listing all breakpoints only used breakpoints are displayed.
The output format for unused breakpoints is as follows:
- "BP"
* The byte index given as two hexadecimal digits
e "Unused"
The output format for used breakpoints is as follows:
. "BP"
» The byte index given as two hexadecimal digits
» A plus sign if the breakpoint is enabled, a minus sign if it is disabled.
* "Lin="followed by the linear address of this breakpoint.

* The segmented address of this breakpoint. Only displayed if the breakpoint was initially
specified with a segmented address, or it had a preferred offset specified with the BP
OFFSET= keyword or to the BO command.

* The breakpoint content byte given in parentheses (generally "CC").
* "Counter="followed by the breakpoint counter.

» "ID: " followed by the breakpoint ID, if any. Depending on the length the ID is shown on
the first line or on a second line.

* "WHEN " followed by the breakpoint condition, if any. This is always written to a line on
its own.

Example output of BL:
-bp at 100 id = start
-bp at 103 counter = 4000

56

10.6

10.7

10.7.1

10.7.1.1

10.7.1.2

-bp at 105 when al == 7

-bl

BP 00 + Lin=01_BB70 1BA7:0100 (CC) Counter=8000, ID: start
BP 01 + Lin=01_BB73 1BA7:0103 (CC) Counter=4000

BP 02 + Lin=01_BB75 1BA7:0105 (CC) Counter=8000

WHEN al == 7

BU command - Break Upwards
break upwards BU

This command, which is only supported by Debuggable builds (DDebug) or Conditionally
Debuggable builds (CDebug), causes the debugger to execute an int3 instruction in its own code
segment. This breaks to the next debugger that was installed prior to DDebug or CDebug. Prior
to the breakpoint, the message "Breaking to next instance." is displayed.

In non-debuggable IDebug builds, the following error message is displayed instead:

-bu
Already in topmost instance. (This is no debugging build of IDebug.)

In conditionally debuggable builds, the following message is displayed instead if CDebug is
currently not in debuggable mode:

-bu
Debuggable mode is disabled.
Enable with this command: r DCO6 or= 0100

BOOT commands - Boot loading support

The BOOT commands are only available if the debugger is running in boot loaded mode.
BOOT PROTOCOL= command

BOOT PROTOCOL=proto [parameters] [partition] [pathnames [cmdline]]

This command is used to load a boot sector or kernel using the loaders implemented by the
debugger. These loaders attempt to be highly compatible to the original loaders whose load
protocols they simulate.

Specify protocol

Using the keywordPROTOCQIthe load protocol to use as a base can be specified. This keyword
is required, unless the special protocol narB&LCTORSs to be used.

Altering protocol parameters

When specifying a protocol other than the spe&EBICTORbrotocol, the protocol parameters
can be altered. Each protocol will set up defaults for all of those parameters. Each protocol can
be completely described by a combination of parameters and default filenames. Every parameter

57

is indicated by a keyword followed by a numeric expression, or in some cases followed by a
segmented address.

The following parameters are available:
MINPARA

Specify minimum amount of paragraphs to load from the first file. It is an error if a file is
shorter than that.

MAXPARA

Specify maximum amount of paragraphs to load from the first file. It is valid for the file to
be shorter or longer than this. If nonzero then it is an error if the file is so long that there
is not enough memory to hold this amount of paragraphs. If zero, then as much of the file
is loaded as fits.

SEGMENT

Specify load address of the data from the first file. The number specified is taken to be the
segment of an address within memory.

ENTRY

Specify entrypoint to set up in the CS:IP registers. If a single numeric expression, itis taken
as the offset (for IP) and the segment value is assumed as zero. That is, CS will be set up
to equal the SEGMENT parameter in use. If a segmented address, the offset is used for IP
and the segment is used as a relative adjustment to the SEGMENT that is in use to obtain
the value for CS. It is valid for the segment value to be positive or negative.

BPB

Specify where to load the boot sector with (E)BPB. If a single numeric expression, it is
taken as the offset in segment zero. If the segment is specified as OFFFFh or -1, then the
"auto-BPB" feature is used and the boot sector and stack is located at a high address that
is not otherwise used. The offset is still set to the offset part in this case.

CHECKOFFSET

Specify offset of word value to check. Must not possibly cross a sector boundary. (This is
checked by testing that the offset modulo 32 is not equal to 31.) May not be higher than
OFFFEN.

CHECKVALUE

Specify value of word to check. If zero, no check occurs. Itis an error if this value is nonzero
and the check does not match.

The following boolean parameters are available. Like the other parameters they read a numeric
expression, but this is only checked to be true (non-zero) or false (zero).

SET_DL_UNIT

If true, set up the DL register with the load unit. This is used by several protocols.

58

SET_BL_UNIT

If true, set up the BL register with the load unit. This is used by the FreeDOS and EDR-
DOS protocols.

SET_SIDI_CLUSTER

If true, initialise the DI (FAT12/FAT16) or SI:DI (FAT32) registers to hold the number of
the first cluster of the first file. This is used by the MS-DOS v7 protocol.

SET_DSS|_DPT

If true, initialise DS:Sl registers to point to the DPT. (Set equal to the interrupt 1Eh vector.)
This may be used by the MS-DOS v6 and IBMDOS protocols.

PUSH_DPT

If true, initialise stack to hold a segmented (16:16) pointer to the interrupt 1Eh vector
(always 0:78h) and then the DPT address (equal to the interrupt 1Eh vector). This may be
used by the MS-DOS v6 and IBMDOS protocols, and is used by the MS-DOS v7 protocol.

DATASTART_HIDDEN

If true, modify the data start variable@word [ss:bp - 4] to include the number of
hidden sectors. (The hidden sectors are the partition's start offset in its unit.) This is used
by the MS-DOS (v6/v7) and IBMDOS protocols.

SET_AXBX_DATASTART

If true, set the AX:BX register pair to the data start variable. If DATASTART_HIDDEN
is also set, the registers will receive the value of the data start variable that includes the
hidden sectors. This is used by the MS-DOS v6 and IBMDOS protocols.

SET_DSBP_BPB

If true, set up the DS register to equal SS. This makes DS:BP point to the boot sector with
the (E)BPB. This is used by the EDR-DOS protocol.

LBA_SET_TYPE

If true, change the third byte of the boot sector to indicate the use of LBA access functions in
the manner expected by the MS-DOS v7 load protocol. That means a 90h (nop instruction)
is written if to use CHS access, a OEh is written if the FAT type is not FAT32 and to use
LBA access, and a OCh is written if the FAT type is FAT32 and to use LBA access.

MESSAGE_TABLE
If true, include the message table used by the MS-DOS v7 load protocol.
SET_AXBX_ROOT_HIDDEN

If true, pass the sector number of the root d