
lDOS boot documentation

2020 by C. Masloch. Usage of the works is permitted provided that this instrument is
retained with the works, so that any entity that uses the works is notified of this instrument.
DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

This document has been compiled on 2025-06-24.

1

Contents

Section 1: lDOS boot protocols . 3

1.1 Sector to iniload protocol . 3

1.1.1 File properties . 3

1.1.2 Signatures . 3

1.1.3 Load Stack Variables (LSV) 4

1.1.4 Memory map . 5

1.1.5 Load filename in the boot sector 6

1.1.6 Query patch support . 6

1.2 Iniload to payload protocol . 7

1.2.1 Extended BIO Parameter Block (EBPB) 7

1.2.2 Load Stack Variables (LSV) 7

1.2.3 Load Data 1 (LD) . 7

1.2.4 Load Command Line (LCL) 8

Source Control Revision ID . 10

2

Section 1: lDOS boot protocols

1.1 Sector to iniload protocol
The iniload kernel is loaded to an arbitrary segment. The segment must be at least 60h. Common
choices are 60h, 70h, and 200h. At least 1536 bytes of the file must be loaded. Current loaders
will load at least 8192 bytes if the file is as large or larger than that. The entrypoint is found by
applying no segment adjustment (0) and choosing the offset 400h (1024).

1.1.1 File properties

The file must be at least 4096 bytes long. This is now required, beyond the former lower bound
of 1536 bytes, to support an optimisation of the FAT12 and FAT16 boot sector loaders. The
lDebug loader and the FAT32+FSIBOOT loader currently retain the 1536 bytes limit.

The file may allow multi-use as a flat .COM format executable, flat .SYS format device driver,
or MZ .EXE format executable and/or device driver. It is also valid to append arbitrary sized
data such as a .ZIP archive.

The file needs to be placed in the root directory for the boot sector loaders. The lDebug loader
allows to load a file from any subdirectory and this is also allowed. The file may be fragmented
in any part. The file data may be located anywhere in the file system. The supported cluster sizes
should be between 32 Bytes and 2 MiB, inclusive. The sector size should be between 32 Bytes
and 8 KiB, inclusive.

1.1.2 Signatures

At offset 1020 (3FCh) there is the signature ‘lD ’. Behind that there are two bytes with printable
non-blank ASCII codepoints. Currently the following signatures are defined:

‘ lDOS’

lDOS kernel (not yet in use)

‘ lDRx ’

RxDOS kernel

‘ lDFD ’

FreeDOS kernel wrapped in iniload (fdkernpl.asm)

‘ lDeb ’

lDebug

‘ lDDb ’

3

lDDebug (debuggable lDebug)

‘ lDbC ’

lCDebug (conditionally debuggable lDebug)

‘ lDTP ’

lDOS test payload kernel (testpl.asm)

‘ lDTW’

lDOS test result writer kernel (testwrit.asm)

1.1.3 Load Stack Variables (LSV)

Under this protocol, the pointer ‘ss:bp ’ is passed. It points to a boot sector with (E)BPB. ‘bp ’
must be even for compatibility with older iniload (before 2023-March). The stack pointer must
be at most ‘bp - 10h ’. Below the pointed to location there live the Load Stack Variables.
These follow this structure:

 struc LOADSTACKVARS, -10h
lsvFirstCluster: resd 1
lsvFATSector: resd 1
lsvFATSeg: resw 1
lsvLoadSeg: resw 1
lsvDataStart: resd 1
 endstruc

lsvFirstCluster

(FAT12, FAT16) Low word gives starting cluster of file. High word uninitialised.

(FAT32) Dword gives starting cluster of file.

(else) Should be zero.

lsvFATSector

(FAT16) Low word gives loaded sector-in-FAT. -1 if none loaded yet. High word
uninitialised.

(FAT32) Dword gives loaded sector-in-FAT. -1 if none loaded yet.

(FAT12, else) Unused.

lsvFATSeg

(FAT16, FAT32) Word gives segment of FAT buffer if word/dword [lsvFATSector] != -1.

(FAT12) Word gives segment of FAT buffer. Zero if none. Otherwise, buffer holds entire
FAT data, up to 6 KiB.

lsvLoadSeg

Word points to segment beyond last loaded paragraph. Allows iniload to determine how
much of it is already loaded.

4

lsvDataStart

Dword gives sector-in-partition of first cluster's data.

An LSV extension allows to pass a command line to the kernel. The base pointer must be at least
‘114h ’ then. The stack pointer must be at most ‘bp - 114h ’ then. This follows the structure
like this:

lsvclSignature equ "CL"
lsvclBufferLength equ 256

 struc LSVCMDLINE, LOADSTACKVARS - lsvclBufferLength - 4
lsvCommandLine:
.start: resb lsvclBufferLength
.signature: resw 1
lsvExtra: resw 1
 endstruc

lsvCommandLine.start

Command line buffer. Contains zero-terminated command line string.

lsvCommandLine.signature

Contains the signature value ‘CL’ if command line is given.

lsvExtra

Used internally by iniload. Space for this must be reserved when passing a command line.

If no command line is passed then either the stack pointer must be ‘bp - 10h ’, or ‘bp -
12h ’, or the word in the lsvCommandLine.signature variable (word [ss:bp - 14h])

must not equal the string ‘CL’.

• dosemu2's RxDOS.3 support sets ‘sp = bp - 10h ’

• ldosboot boot.asm (FAT12/FAT16) loader makes sure not to pass the variable with the
content "CL". Refer to placeholder and DIRSEARCHSTACK_CL_FIRST uses in the
source.

• ldosboot boot32.asm (FAT32) loader uses the variable for an ‘entries per sector’ value
which is always a power of two and always below-or-equal 100h.

• lDebug with protocol optionscmdline=0 push_dpt=0 sets ‘sp = bp - 10h ’

1.1.4 Memory map

The initial loader part that is loaded must be loaded at above or equal to linear 00600h. The FAT
buffer segment (if used) must also be stored at above or equal to linear 00600h. The stack (which
should extend at least 512 bytes below ‘ss:bp ’) and boot sector (pointed to by ‘ss:bp ’, at
least 512 bytes length) should also be stored at above or equal to linear 00600h.

There is an additional memory area, the Low Memory Area top reservation, which should be
unused by the load protocol at handoff time but be at least 20 KiB in size. It is located below the
usable Low Memory Area top. That is, directly below the EBDA, RPL-reserved memory, video

5

memory, or otherwise UMA. This area is reserved in order to facilitate initial loader operation.

None of the memory areas may overlap. This does not include the FAT buffer in case it is
uninitialised.

1.1.5 Load filename in the boot sector

The boot sector may be expected to contain a valid 8.3 format (blank-padded FCB) filename
in the area of the boot sector starting behind the (E)BPB, extending up to below the boot
sector signature word with value AA55h (at offset 510 in the boot sector). This name should
not contain blanks other than trailing in the file name portion or trailing in the file extension
portion. It should consist of printable ASCII codepoints. That is, byte values between 20h and
7Eh inclusive. It should not consist of eleven times the same byte value. Additional FAT Short
File Name restrictions may be assumed.

Although a loader should not depend on this for crucial operation, it may want to detect the kernel
name it was presumably loaded from for informational or optional purposes. The canonical
implementation of this is currently the function ‘findname ’ in the testpl.asm test payload
kernel. It is found within the ldosboot repo. This handling is based on the function of the same
name in the instsect application.

1.1.6 Query patch support

The ldosboot repo includes a patch Script for lDebug (.sld) file which allows to patch the initial
loader stage. The patches concern handling of the CHS geometry detection, and whether LBA
or CHS access is used. There are several legacy patch sites in which patch.sld can directly patch
the initial loader's code.

However, the preferred way is to find the query patch sequence. It should appear within the first
1536 bytes, that is within the part of the initial loader that must be loaded. This is the sequence:

8A5640 mov dl, byte [bp + 40h]
B8xxyy mov ax, yyxxh
84D2 test dl, dl
7902 jns @F
86C4 xchg al, ah
@@:

The immediate word of themov ax instruction is to be patched. The sequence should be
scanned for without regard as to what the current contents of this word are.

The following flag values are used:

• 01h Force CHS access, do not detect LBA support with 13.41

• 02h Force LBA access, do not detect LBA support with 13.41

• 04h Force use of BPB's CHS geometry, do not detect with 13.08

• 80h Used by lDebug. If this value is set for the load unit, then lDebug will make use
of the other flags set up for that unit. The corresponding flags will be saved in lDebug's
load_unit_flags. This affects only the load unit (LD in lDebug terminology), which suffices
to pass commands in the startup Script for lDebug.

The flag 01h takes precedence over 02h if both are set.

6

https://hg.pushbx.org/ecm/ldosboot/file/e0c17723f953/testpl.asm#l668
https://hg.pushbx.org/ecm/instsect/file/53e4327aacd6/instsect.asm#l2442

The low byte (xxh) is used in case the loader loads from a diskette unit, that is a unit number
below 80h. The high byte (yyh) is used otherwise, in case the loader loads from a hard disk unit,
that is a unit number above-or-equal 80h.

1.2 Iniload to payload protocol
The payload is loaded to an arbitrary segment. The segment must be at least 60h. The entire
payload must be loaded. The size of the payload is determined at iniload build time. The
entrypoint is found by applying a segment adjustment and choosing an offset. The segment
adjustment is specified at iniload build time by the numeric define_EXEC_SEGMENT(default
0), and the offset by the define_EXEC_OFFSET(default 0).

1.2.1 Extended BIO Parameter Block (EBPB)

Above the LSV,ss:bp points to an EBPB and surrrounding boot sector. Note that this is always
a FAT32-style EBPB. If the filesystem that is loaded from is not FAT32, and is therefore FAT16
or FAT12, then the FAT16/FAT12 BPBN structure is moved up. It is placed where the FAT32
BPBN is usually expected. In this case, the entire boot sector contents behind the BPBN are also
moved up by the size of the FAT32-specific fields. The FAT32-specific fields are filled with zeros,
except for the FAT32 ‘sectors per FAT’ field. It is filled with the contents of the FAT16/FAT12
‘sectors per FAT’ field.

1.2.2 Load Stack Variables (LSV)

Refer to section 1.1.3.

1.2.3 Load Data 1 (LD)

Below the LSV, iniload passes the LOADDATA (1) structure.

 struc LOADDATA, LOADSTACKVARS - 10h
ldMemoryTop: resw 1
ldLoadTop: resw 1
ldSectorSeg: resw 1
ldFATType: resb 1
ldHasLBA: resb 1
ldClusterSize: resw 1
ldParaPerSector:resw 1
ldLoadingSeg:
ldQueryPatchValue:
 resw 1
ldLoadUntilSeg: resw 1
 endstruc

ldMemoryTop

Word. Segment pointer to behind usable memory. Points at the first of the EBDA, RPL-
reserved memory, or video memory or otherwise UMA. Indicates how much memory may
be used by a typical kernel. (lDebug detects the EBDA to move that below where it installs.)

ldLoadTop

Word. Segment pointer to lowest lDOS boot memory in use. All memory between linear
600h and the segment indicated here is usable by the payload. Only the payload itself is

7

stored in this area. The other buffers, stack, and structures passed by iniload must live above
this segment.

ldSectorSeg

Word. Segment pointer to an 8 KiB transfer buffer. It is insured that this buffer does not cross
a 64 KiB boundary. This may be needed by some disk units. The buffer is not initialised
to anything generally.

ldFATType

Byte. Indicates length of FAT entry in bits. 12 indicates FAT12, 16 FAT16, 32 FAT32. It is
planned to allow zero for non-FAT filesystems.

ldHasLBA

Byte. Only least significant bit used. Bit on indicates LBA extensions available for the load
disk unit. Bit off indicates LBA extensions not available.

ldClusterSize

Word. Contains amount of sectors per cluster. Unlike the byte field for the same purpose
in the BPB, this field can encode 256 (EDR-DOS compatible) without any masking. May
be given as zero for non-FAT filesystems.

ldParaPerSector

Word. Contains amount of paragraphs per sector. Must be a power of two between 2 (32
B/s) and 200h (8192 B/s). May be given as zero for non-FAT filesystems.

ldLoadingSeg

Word. Internally used by iniload. Available for re-use by payload. However,
ldQueryPatchValue re-uses the same field.

ldQueryPatchValue

Word. Passes the query patch value from the initial loader. This provides an opportunity to
patch a well-known site in the initial loader to change its behaviour in some ways. Near the
end of its operation, the initial loader passes along this value in this variable for the next
stage to use.

ldLoadUntilSeg

Word. Internally used by iniload. Available for re-use by payload.

1.2.4 Load Command Line (LCL)

Below the LOADDATA structure, iniload passes the LOADCMDLINE structure.

lsvclBufferLength equ 256

 struc LOADCMDLINE, LOADDATA - lsvclBufferLength
ldCommandLine:
.start: resb lsvclBufferLength
 endstruc

8

This buffer is always initialised to an ASCIZ string. At most 255 bytes may be initialised to
string data. At most the 256th byte is a zero.

If the first word of the buffer is equal to 0FF00h, that is there is an empty command line the
terminator of which is followed by a byte with the value 0FFh, then no command line was
passed to iniload. Currently lDebug can pass a command line to iniload when loading with its
lDOS, RxDOS.2, RxDOS.3, or FreeDOS protocols. When iniload is loaded as a Multiboot1 or
Multiboot2 specification kernel, it is also assumed that a command line can be passed.

9

Source Control Revision ID

hg , from commit on at

If this is in ecm's repository, you can find it at https://hg.pushbx.org/ecm/ldosboot/rev/

10

https://hg.pushbx.org/ecm/ldosboot/rev/

	lDOS boot documentation
	Contents
	Section 1: lDOS boot protocols
	1.1 Sector to iniload protocol
	1.1.1 File properties
	1.1.2 Signatures
	1.1.3 Load Stack Variables (LSV)
	1.1.4 Memory map
	1.1.5 Load filename in the boot sector
	1.1.6 Query patch support

	1.2 Iniload to payload protocol
	1.2.1 Extended BIO Parameter Block (EBPB)
	1.2.2 Load Stack Variables (LSV)
	1.2.3 Load Data 1 (LD)
	1.2.4 Load Command Line (LCL)

	Source Control Revision ID

